...
首页> 外文期刊>BioSystems >Mathematical modelling in the post-genome era: understanding genome expression and regulation - a system theoretic approach
【24h】

Mathematical modelling in the post-genome era: understanding genome expression and regulation - a system theoretic approach

机译:后基因组时代的数学建模:了解基因组表达和调控-系统理论方法

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a mathematical framework for modelling genome expression and regulation. Starting with a philosophical foundation, causation is identified as the principle of explanation of change in the realm of matter. Causation is, therefore, a relationship, not between components, but between changes of states of a system. We subsequently view genome expression (formerly known as 'gene expression') as a dynamic process and model aspects of it as dynamic systems using methodologies developed within the areas of systems and control theory. We begin with the possibly most abstract but general formulation in the setting of category theory. The class of models realised are state-space models, input-output models, autoregressive models or automata. We find that a number of proposed 'gene network' models are, therefore, included in the framework presented here. The conceptual framework that integrates all of these models defines a dynamic system as a family of expression profiles. It becomes apparent that the concept of a 'gene' is less appropriate when considering mathematical models of genome expression and regulation. The main claim of this paper is that we should treat (model) the organisation and regulation of genetic pathways as what they are: dynamic systems. Microarray technology allows Lis to generate large sets of time series data and is, therefore, discussed with regard to its use in mathematical modelling of gene expression and regulation. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved. [References: 29]
机译:本文介绍了用于建模基因组表达和调控的数学框架。从哲学基础开始,因果关系被认为是解释物质领域变化的原理。因此,因果关系不是组件之间的关系,而是系统状态变化之间的关系。随后,我们将基因组表达(以前称为“基因表达”)视为动态过程,并使用系统和控制理论领域内开发的方法将其方面建模为动态系统。我们从类别理论的背景下可能是最抽象但最笼统的表述开始。实现的模型类别是状态空间模型,输入输出模型,自回归模型或自动机。因此,我们发现许多提议的“基因网络”模型都包含在此处介绍的框架中。集成了所有这些模型的概念框架将动态系统定义为一系列表达配置文件。很明显,当考虑基因组表达和调控的数学模型时,“基因”的概念不太合适。本文的主要主张是,我们应将遗传途径的组织和调节视为(建模)它们是:动态系统。微阵列技术允许Lis生成大量时间序列数据,因此,就其在基因表达和调控的数学建模中的使用进行了讨论。 (C)2002 Elsevier Science Ireland Ltd.保留所有权利。 [参考:29]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号