...
首页> 外文期刊>AAPG Bulletin >The controls on the composition of biodegraded oils in the deep subsurface: Pan II- Geological controls on subsurface biodegradation fluxes and constraints on reservoir-fluid property prediction
【24h】

The controls on the composition of biodegraded oils in the deep subsurface: Pan II- Geological controls on subsurface biodegradation fluxes and constraints on reservoir-fluid property prediction

机译:深部地下生物降解油成分的控制:Pan II-地下生物降解通量的地质控制和储层流体性质预测的约束

获取原文
获取原文并翻译 | 示例
           

摘要

The principal controls on the fluid properties of biodegraded oil systems have been determined by a combination of petroleum geochemistry,numerical modeling of oil biodegradation in reservoirs,and analysis of oil property data sets from a variety of geological settings.Petroleum biodegradation proceeds under anaerobic conditions in any reservoir that has a water leg and has not been heated to temperatures more than 80 deg C.In most reservoirs with low concentrations of aqueous sulfate,methanogenic degradation is a primary mechanism of petroleum degradation,whereas in waters containing abundant sulfate,sulfate reduction and sulfide production may dominate.Net degradation of petroleum fractions in reservoirs is primarily controlled by the reservoir temperature,the chemical compounds being degraded,and relationships between the oil-water contact (OWC) area and oil volume.The relative volumes of water leg to oil leg,prior level of oil biodegradation,and reservoir water salinity act as second-order controls on the process.Typically,degradation fluxes (kilograms of petroleum destroyed per square meter of oil-water contact area per year or kg petroleum m~(-2) OWC yr~(-1)) for fresh petroleum in clastic reservoirs are in the range of 10~(-3)-10~(-4) kg petroleum m~(-2) OWC yr~(-1) and increase with decreasing reservoir temperature,from zero near 80 deg C,to a maximum flux at the OWC of less than 10~(-3) kg petroleum m~(-2) OWC yr~(-1) at a temperature less than 40 deg C.At very low reservoir temperatures and with severely degraded oils,such as are seen in the near-surface Canadian tar sands at the present day,the net degradation fluxes are much less than maximum values.Nutrient supply from the aquifer and adjacent shales,mostly buffered by mineral dissolution,probably provides the ultimate control on the range of degradation flux values.Oil compositional gradients and resulting oil viscosity variations are common on both reservoir thickness and field scales in biodegraded oil reservoirs and are a defining characteristic of heavy oil fields produced by crude-oil biodegradation.Continuous vertical gradients in the oil columns document episodic degradation for many millions of years,suggesting that the time scales of oilfield degradation and petroleum charging are similar.The flux-temperature relationship we have derived,coupled with typical reservoir charge histories,defines the range of variation of fluid properties seen in many biodegraded oil provinces and identifies oil charge,mixing of biodegraded and fresh oils,and reservoir-temperature history as the primary controls on fluid properties.These flux-temperature relationships are easily integrated into prospect charge modeling procedures; sensitivity analyses show that the limiting factor in fluid property predictions,using even this first-level approach,are ultimately constrained by the accuracy of current oil-charge modeling estimates.The absence today of any functional geo-chemical proxies for assessing oil-residence time in oil fields and the substantial uncertainty in petroleum-charging times estimated by forward basin modeling is a major obstacle to more accurate fluid-property predictions that needs to be addressed.
机译:通过结合石油地球化学,储层中石油生物降解的数值模拟以及对各种地质环境中石油属性数据集的分析,确定了生物降解石油系统的流体性质的主要控制方法。任何有水腿且未加热到80摄氏度以上温度的油藏。在大多数硫酸盐浓度低的油藏中,甲烷分解是石油降解的主要机理,而在含有大量硫酸盐的水中,硫酸盐还原和硫化物的产生可能占主导地位。油藏中石油馏分的净降解主要受油藏温度,降解的化合物以及油水接触(OWC)面积与油量之间的关系控制。腿,石油生物降解的先决水平和储层水盐度起着山高作用通常,碎屑中的新鲜石油的降解通量(每平方米油水接触面积每年破坏的石油公斤或千克石油m〜(-2)OWC yr〜(-1))储层范围为10〜(-3)-10〜(-4)kg石油m〜(-2)OWC yr〜(-1),并随着储层温度的降低而增加,从80摄氏度附近的零升高到在低于40摄氏度的温度下,在OWC上的最大通量小于10〜(-3)kg石油m〜(-2)OWC yr〜(-1)。在非常低的油藏温度和严重降解的油中,例如如今天在加拿大近地表焦油砂中所见,净降解通量远低于最大值。含水层和邻近页岩的营养供应主要受矿物溶解的缓冲,可能最终控制了范围在生物降解的油田中,油层梯度和油粘度变化在储层厚度和油田规模上都很常见。 il储层是原油生物降解所产生的稠密油田的定义特征。油柱中连续的垂直梯度记录了数百万年的事件性退化,这表明油田降解和充油的时间尺度是相似的。我们得出的温度-温度关系,再结合典型的储层装油历史,定义了许多生物降解油省发现的流体性质变化范围,并确定了油的充注量,生物降解油与新鲜油的混合以及储层温度历史作为控制油藏的主要控制因素。这些通量-温度关系很容易集成到预期的电荷建模程序中;敏感性分析表明,即使使用这种一级方法,流体属性预测中的限制因素最终也会受到当前含油量建模估算值的准确性的限制。如今,尚没有任何功能地球化学方法来评估含油时间油田和通过前盆地建模估算的充油时间存在很大不确定性,这是需要解决的更精确的流体属性预测的主要障碍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号