首页> 外文期刊>Journal of thermal analysis and calorimetry >Thermal analysis and high?heat flux testing of unidirectional carbon–carbon composite for infrared imaging diagnostic
【24h】

Thermal analysis and high?heat flux testing of unidirectional carbon–carbon composite for infrared imaging diagnostic

机译:热分析和高π红外成像诊断单向碳复合材料的热通量试验

获取原文
获取原文并翻译 | 示例
           

摘要

Unidirectional carbon fiber–carbon matrix (CFC) composite tiles, which are proposed to be employed in thermal imaging diagnostic of powerful particle beams, have been designed, manufactured, and tested. The particle beam is intercepted by the tiles, which erodes the carbon surface producing debris, while a plasma forms in front of the tiles due to beam–gas interaction. Carbon fibers are aligned along the tile thickness to transfer the heat flux from the front to the rear surface with limited thermal pattern broadening thanks to the ten times higher thermal conductivity along the fibers. This feature of the tiles allows to detect thermal radiation at the tile rear surface by thermographic cameras, producing curves to be correlated to energy, intensity profile, and duration of the particle beam. Thermal patterns with spatial resolution of a few mm, time resolution up to 40?ms, and maximum temperature of 1300?°C have been measured on CFC tiles exposed to accelerated hydrogen beam pulses with power densities up to 13?MW?m_(?2)in thehigh heat flux test facility GLADIS. Multiphysics transient non-linear parametric finite-element models have been developed to simulate thermal transfer inside tiles, thermal patterns at surfaces, and thermal deformations of tiles by varying spatial distribution and peak value of the power density. Temperature gradients, hoop deformations around the heated region, location of failure region, and failure time have been analysed and discussed to recognise the tile behaviour during the high heat flux tests. Simulation models have been validated by comparing outputs to experimental measurements. Finally, model geometry and parameters have been changed to simulate the behaviour of the complete diagnostic to be used in the Source for the Production of Ions of Deuterium Extracted from a Radio-frequency plasma (SPIDER) test bed of the ITER Neutral Beam Test Facility with expected power density up to 20?MW?m_(?2).
机译:提出的单向碳纤维 - 碳基质(CFC)复合瓦片被设计,制造和经过了强大的粒子梁的热成像诊断。粒子束被瓷砖拦截,瓦片侵蚀了产生碎片的碳表面,而由于梁气相组成的瓦片前面的等离子体形成。碳纤维沿着瓷砖厚度对准,以通过沿着纤维的较高导热率的热导电率较高的10倍,将热通量从前面转移到后表面。瓦片的该特征允许通过热量摄像机检测瓦片后表面的热辐射,产生与粒子束的能量,强度分布和持续时间相关的曲线。具有少毫米的空间分辨率的热图案,时间分辨率高达40〜MS,并且在暴露于加速氢束脉冲的CFC瓦片上测量了1300°C的最高温度,电力密度高达13Ωmm?m_(? 2)在高温通量测试设施Gladis。已经开发了多体瞬态非线性参数有限元模型以通过不同的空间分布和功率密度的峰值来模拟瓷砖内部的热传输,热图案,以及瓷砖的热变形。温度梯度,加热区域周围的箍变形,故障区域的位置和失效时间围绕,并讨论以识别在高热量的测试期间的瓦片行为。通过将输出与实验测量比较来验证仿真模型。最后,模型几何和参数已经改变以模拟从射频等离子体(蜘蛛)测试设备的射频提取的氘的根源中使用的完整诊断的行为预期功率密度高达20?MW?M _(?2)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号