首页> 外文期刊>Journal of thermal analysis and calorimetry >Exergoeconomic analysis and optimization of a transcritical CO2 power cycle driven by solar energy based on nanofluid with liquefied natural gas as its heat sink
【24h】

Exergoeconomic analysis and optimization of a transcritical CO2 power cycle driven by solar energy based on nanofluid with liquefied natural gas as its heat sink

机译:基于纳米流体的太阳能驱动的跨临界二氧化碳电力循环的横临界CO2功率循环优化,液化天然气作为其散热器

获取原文
获取原文并翻译 | 示例
           

摘要

The thermodynamic and economic analysis of a transcritical carbon dioxide power cycle is coupled with solar thermal subsystem and LNG subsystem. Solar thermal subsystem consists of parabolic trough collectors and a thermal storage tank, and the Copper-Therminol VP1 nanofluid is used in this subsystem. In most hours of the day, the solar subsystem based on Copper-Therminol VP1 nanofluid has a better thermal performance, which includes the output temperature of the collector and temperature of the storage tank, compared to the solar subsystem based on Therminol VP1. LNG subsystem is employed as a heat sink of the transcritical CO2 power subsystem, as well as the power generation by LNG turbine. The exergoeconomic analysis is performed to evaluate the effects of the key parameters, including turbine inlet temperatures and pressures, condensate pressure, CO2 mass flow rate and LNG pressure, on the exergy efficiency and product cost rate. In addition, parameter optimization is conducted via genetic algorithm. TOPSIS decision making technique is employed to select optimum point. System is capable of producing power with exergy efficiency of 8.53%, and product cost rate is equal to 2.09 million dollars per year, under optimum conditions. The values of exergoeconomic variables for each component of the system are calculated. The results represent that solar collector, evaporator, condenser, CO2 turbine and LNG turbine have the highest total cost rate of exergy destruction and investment o _ C d thorn _ ZTHORN, respectively. The highest amount of investment cost rate _ Z occurs in solar collector. The condenser has the lowest value of exergoeconomic factor which indicates that the costs associated with condenser come from exergy destruction rate.
机译:跨临界二氧化碳动力循环的热力学和经济分析与太阳能热子系统和LNG子系统相结合。太阳能热子系统由抛物线收集器和热储罐组成,并且在该子系统中使用铜 - 热醇VP1纳米流体。在一天中的大多数时间,基于铜 - Therminol VP1纳米流体的太阳能子系统具有更好的热性能,其包括基于Therminol VP1的太阳能子系统相比,包括存储罐的收集器和温度的输出温度。 LNG子系统用作跨临界CO2电力子系统的散热器,以及LNG涡轮机的发电。进行Exergo经济分析以评估关键参数的效果,包括涡轮机入口温度和压力,冷凝水压力,CO2质量流量和LNG压力,效率效率和产品成本率。此外,参数优化是通过遗传算法进行的。采用TOPSIS决策技术选择最佳点。系统能够在最佳条件下生产8.53%的效率为8.53%,产品成本率等于每年2909万美元。计算系统的每个组件的Exergo经济变量的值。结果表示太阳能收集器,蒸发器,冷凝器,CO2涡轮机和液化涡轮机分别具有最高的销毁和投资o _ c d刺_ zthorn的总成本率。最高量的投资成本率_ Z发生在太阳能收集器中。冷凝器具有exergoonomic因素的最低值,表明与冷凝器相关的成本来自漏洞的破坏率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号