首页> 外文期刊>Journal of thermal analysis and calorimetry >Mixed convection and thermodynamic irreversibilities in MHD nanofluid stagnation-point flows over a cylinder embedded in porous media
【24h】

Mixed convection and thermodynamic irreversibilities in MHD nanofluid stagnation-point flows over a cylinder embedded in porous media

机译:MHD纳米流体停滞点中的混合对流和热力学不缩小点在嵌入多孔介质中的圆柱体上流动

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The impingement of CuO-water nanofluid flows upon a cylinder subject to a uniform magnetic field with constant surface temperature and embedded in porous media is investigated for the first time in literature. The surface of the cylinder can feature uniform or non-uniform mass transpiration and is hotter than the incoming nanofluid flow. The gravitational effects are taken into account and the three-dimensional governing equations of mixed convection in curved porous media, under magnetohydrodynamic effects, are reduced to those solvable by a finite difference scheme. Through varying a mixed convection parameter, the situations dominated by forced, mixed and free convection are examined systematically. The numerical solutions of these equations reveal the flow velocity and temperature fields as well as the Nusselt number and induced shear stress. These are then used to calculate the rate of entropy generation within the system by viscous and heat transfer irreversibilities. The results show that Nusselt number increases with increasing the concentration of nanoparticles, while it slightly deceases through intensifying the magnetic parameter. Non-uniform transpiration is shown to strongly affect the average rate of heat transfer. Importantly, it is demonstrated that the specific mode of heat convection can majorly influence the intensity of entropy generation and that the irreversibilities are much larger under natural convection compared to those in mixed and forced convection. Calculation of Bejan number shows that this is due to more pronounced relative contribution of viscous irreversibilities when free convection effects dominate the mixed convection process.
机译:的CuO - 水纳米流体的冲击时的气缸主体与恒定表面温度的均匀的磁场和流过嵌入在多孔介质研究了在文献中的第一次。气缸罐特征均匀或非均匀的质量蒸腾的表面且比所述进入的纳米流体流动更热。引力效应被考虑并且在弯曲的多孔介质混合对流的三维控制方程,下磁流体动力效应,是由有限差分格式减少到那些可解的。通过改变混合的对流参数,通过强制,混合和自由对流占主导地位的情况下,被系统地检查。这些方程的数值解揭示的流速和温度场以及努塞尔数和诱导剪切应力。这些随后被用于计算熵产生的系统内的粘性和传热不可逆性的速率。结果表明随着纳米颗粒的浓度努塞尔数的增加,而它通过略微加大磁参数deceases。非均匀蒸腾被示出为强烈地影响热传递的平均速率。重要的是,据证实热对流的具体模式可以majorly影响熵产生的强度和不可逆性是相比,这些混合和强制对流自然对流下大得多。的比赞数显示计算,这是由于粘性不可逆性的更显着的相对贡献时自由对流效应支配混合对流过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号