...
首页> 外文期刊>Journal of Sound and Vibration >Characterization and modeling of the acoustic field generated by a curved ultrasound transducer for non-contact structural excitation
【24h】

Characterization and modeling of the acoustic field generated by a curved ultrasound transducer for non-contact structural excitation

机译:弯曲超声换能器对非接触结构激励产生的声场的表征及建模

获取原文
获取原文并翻译 | 示例
           

摘要

Conventional excitation techniques typically use an impact hammer, piezoelectric actuator, or mechanical shaker excitation for experimental modal testing. However, the use of these devices may be challenging if accurate high-frequency dynamic measurements on small or lightweight structural parts have to be performed. To overcome these problems, the high-frequency radiation force generated by focused ultrasonic transducers (FUTs) can be used. This approach has shown potential to be used as a non-contact method for modal excitation of small-sized or flexible structures such as MEMS devices, small turbine blades, integral blade rotors (IBR), and biological structures. However, the sound radiation in the air of these ultrasonic transducers and the resulting radiation force imparted onto a structure is not well understood and critically crucial for performing accurate modal analysis and system identification. In this research, the technical development of ultrasound radiation pressure mapping and simulation is presented. Starting from the calibrated sound pressure fields generated by the spherically FUT, driven by amplitude modulated signals, the dynamic focused ultrasound radiation force is modeled and estimated. The acoustic pressure field of a FUT operating in the air is measured and used for validating the accuracy of a new numerical boundary element method (BEM) model in predicting the direct acoustic force generated in the high-frequency range (i.e., 300-400 kHz). The results show that an excellent agreement is found regarding both the pressure profile and amplitude. Pressure fields up to 1200 Pa can be generated as the transducer is driven at 400 kHz. Experiments also prove that the FUT is capable of creating a focal spot size of nearly 3 mm in diameter. To finish, the FUT's dynamic focused ultrasound radiation force is quantified and could be used to quantify a force-response relationship for experimental modal analysis purposes. (C) 2018 Elsevier Ltd. All rights
机译:传统的激励技术通常使用冲击锤,压电致动器或机械振动筛来激发实验模态测试。然而,如果必须执行关于小型或轻质结构部件的精确高频动态测量,则这些设备的使用可能是具有挑战性的。为了克服这些问题,可以使用由聚焦超声换能器(FUTS)产生的高频辐射力。该方法示出了潜力用作用于模态激发的非接触方法,用于小尺寸或柔性结构,例如MEMS器件,小型涡轮叶片,整体叶片转子(IBR)和生物结构。然而,这些超声换能器的空气中的声辐射和赋予结构上的所得的辐射力尚未得到很好的理解,并且对于执行准确的模态分析和系统识别至关重要。在这项研究中,提出了超声辐射压力测绘和模拟的技术开发。从由球形FUT产生的校准声压场开始,由幅度调制信号驱动,动态聚焦的超声辐射力被建模和估计。测量在空气中运行的FUT的声压场,并用于验证新的数值边界元方法(BEM)模型的准确性预测高频范围内产生的直接声学(即,300-400kHz )。结果表明,关于压力曲线和幅度的发现,发现了一个很好的协议。由于换能器在400 kHz驱动,因此可以产生高达1200 PA的压力场。实验还证明FUT能够产生直径近3毫米的焦点尺寸。为了完成,量化Fut的动态聚焦超声辐射力,可用于量化用于实验模态分析目的的力响应关系。 (c)2018 Elsevier有限公司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号