首页> 外文期刊>Journal of Sound and Vibration >Bayesian inference for damage identification based on analytical probabilistic model of scattering coefficient estimators and ultrafast wave scattering simulation scheme
【24h】

Bayesian inference for damage identification based on analytical probabilistic model of scattering coefficient estimators and ultrafast wave scattering simulation scheme

机译:基于分析概率模型的散射系数估计和超快波散射模拟方案的损伤识别损伤识别推断

获取原文
获取原文并翻译 | 示例
           

摘要

Ultrasonic Guided Waves (GW) actuated by piezoelectric transducers installed on structures have proven to be sensitive to small structural defects, with acquired scattering signatures being dependent on the damage type. This study presents a generic framework for probabilistic damage characterization within complex structures, based on physics-rich information on ultrasound wave interaction with existent damage. To this end, the probabilistic model of wave scattering properties estimated from measured GWs is inferred based on absolute complex-valued ratio statistics. Based on the probabilistic model, the likelihood function connecting the scattering properties predicted by a computational model containing the damage parametric description and the scattering estimates is formulated within a Bayesian system identification framework to account for measurement noise and modelling errors. The Transitional Monte Carlo Markov Chain (TMCMC) is finally employed to sample the posterior probability density function of the updated parameters. However, the solution of a Bayesian inference problem often requires repeated runs of "expensive-to-evaluate" Finite Element (FE) simulations, making the inversion procedure firmly demanding in terms of runtime and computational resources. To overcome the computational challenges of repeated likelihood evaluations, a cheap and fast Kriging surrogate model built and based on a set of training points generated with an experiment design strategy in tandem with a hybrid Wave and Finite Element (WFE) computational scheme is proposed in this study. In each "numerical experiment", the training outputs (i.e. ultrasound scattering properties) are efficiently computed using the hybrid WFE scheme which combines conventional FE analysis with periodic structure theory. By establishing the relationship between the training outputs and damage characterization parameters statistically, the surrogate model further enhances the computational efficiency of the exhibited scheme. Two case studies including one numerical example and an experimental one are presented to verify the accuracy and efficiency of the proposed algorithm. (C) 2019 Elsevier Ltd. All rights reserved.
机译:由安装在结构上的压电传感器驱动的超声波引导波(GW)已经证明对小型结构缺陷敏感,采用散射签名依赖于损坏类型。本研究介绍了复杂结构内的概率损伤表征的通用框架,基于与存在损坏的超声波相互作用的物理学信息。为此,从测量的GWS估计的波散射特性的概率模型基于绝对复值比率统计推断。基于概率模型,在贝叶斯系统识别框架内配制了包含损坏参数描述和散射估计的计算模型预测的散射特性的似然函数在贝叶斯系统识别框架内配制,以考虑测量噪声和建模错误。过渡蒙特卡罗马尔可夫链(TMCMC)最终采用更新参数的后验概率密度函数。然而,贝叶斯推理问题的解决方案通常需要重复运行的“昂贵至尊评估”有限元(FE)模拟,使得反转过程在运行时和计算资源方面牢固地苛刻。为了克服重复似然评估的计算挑战,建立了一个廉价,快速的Kriging代理模型,并基于用实验设计策略在与混合波和有限元(WFE)计算方案中的实验设计策略产生的一组培训点。学习。在每个“数值实验”中,使用与周期性结构理论相结合的常规FE分析,有效地计算训练输出(即超声波散射特性)。通过在统计上建立训练输出和损坏表征参数之间的关系,替代模型进一步提高了展出方案的计算效率。提出了两个案例研究,包括一个数值示例和实验装置,以验证所提出的算法的准确性和效率。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号