...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >In situ extracted poly(acrylic acid) contributing to electrospun nanofiber separators with precisely tuned pore structures for ultra-stable lithium-sulfur batteries
【24h】

In situ extracted poly(acrylic acid) contributing to electrospun nanofiber separators with precisely tuned pore structures for ultra-stable lithium-sulfur batteries

机译:原位提取的聚(丙烯酸)有助于电纺纳米纤维分离器,具有精确调谐的孔结构,用于超稳定的锂 - 硫磺电池

获取原文
获取原文并翻译 | 示例
           

摘要

Lithium-sulfur (Li-S) batteries are extremely attractive for next-generation energy storage technologies owing to their high energy density, low cost and environmental friendliness. Nevertheless, the severe shuttle effect of soluble lithium polysulfides (LiPS) has been one of the major technical challenges causing the rapid capacity fading of Li-S batteries. Herein, we prepare a uniquely designed polyacrylonitrile/poly(acrylic acid) composite nanofiber separator with controllable pore structures and abundant electronegative groups, which is denoted as E-PAN/PAA, to effectively suppress the shuttling effect of LiPS. By a facile electrospinning strategy combined with ethanol steaming treatment, poly(acrylic acid) can be in situ extracted out from the inside of PAN/PAA composite nanofibers to precisely tune the pore structure of the nanofiber separator. As a result, the optimized E-PAN/PAA separator can act as an ionic sieve to allow fast Li+ transport while effectively inhibiting LiPS migration as well, leading to a high initial capacity of 1232 mA h g(-1) at 0.1C and a remarkable cycling stability with an ultra-low fading rate of 0.03% per cycle over 500 cycles at 1C. Moreover, the E-PAN/PAA separator presents a remarkable combination of excellent electrolyte wettability, thermal stability and mechanical properties, providing a valuable strategy for the design and manufacture of advanced Li-S battery separators.
机译:由于其高能量密度,低成本和环境友好,锂 - 硫磺(LI-S)电池对下一代能源存储技术非常有吸引力。然而,可溶性锂多硫化物(嘴唇)的严重梭效果是导致LI-S电池快速衰落的主要技术挑战之一。在此,我们制备具有可控孔结构的独特设计的聚丙烯腈/聚(丙烯酸)复合纳米纤维分离器,并且用浓度的电负剂基团表示为E-PAN / PAA,以有效地抑制唇缘的穿梭效果。通过容易静电纺丝策略与乙醇蒸汽处理结合,聚(丙烯酸)可以原位从平底锅/ PAA复合纳米纤维的内部提取出来,精确地调节纳米纤维分离器的孔结构。结果,优化的E-PAN / PAA分离器可以充当离子筛,以允许快速Li +运输,同时有效地抑制嘴唇迁移,导致在0.1℃下的1232 mA Hg(-1)的高初始容量。显着的循环稳定性,在1C下以超过500次循环的0.03%的超低衰落率。此外,E-PAN / PAA分离器具有出色的电解质润湿性,热稳定性和机械性能的显着组合,为先进的LI-S电池隔板的设计和制造提供了有价值的策略。

著录项

  • 来源
  • 作者单位

    Donghua Univ Innovat Ctr Text Sci &

    Technol Coll Mat Sci &

    Engn State Key Lab Modificat Chem Fibers &

    Polymer Mat 2999 North Renmin Rd Shanghai 201620 Peoples R China;

    Donghua Univ Innovat Ctr Text Sci &

    Technol Coll Mat Sci &

    Engn State Key Lab Modificat Chem Fibers &

    Polymer Mat 2999 North Renmin Rd Shanghai 201620 Peoples R China;

    Donghua Univ Innovat Ctr Text Sci &

    Technol Coll Mat Sci &

    Engn State Key Lab Modificat Chem Fibers &

    Polymer Mat 2999 North Renmin Rd Shanghai 201620 Peoples R China;

    Donghua Univ Innovat Ctr Text Sci &

    Technol Coll Mat Sci &

    Engn State Key Lab Modificat Chem Fibers &

    Polymer Mat 2999 North Renmin Rd Shanghai 201620 Peoples R China;

    Donghua Univ Innovat Ctr Text Sci &

    Technol Coll Mat Sci &

    Engn State Key Lab Modificat Chem Fibers &

    Polymer Mat 2999 North Renmin Rd Shanghai 201620 Peoples R China;

    Donghua Univ Innovat Ctr Text Sci &

    Technol Coll Mat Sci &

    Engn State Key Lab Modificat Chem Fibers &

    Polymer Mat 2999 North Renmin Rd Shanghai 201620 Peoples R China;

    Donghua Univ Innovat Ctr Text Sci &

    Technol Coll Mat Sci &

    Engn State Key Lab Modificat Chem Fibers &

    Polymer Mat 2999 North Renmin Rd Shanghai 201620 Peoples R China;

    Donghua Univ Innovat Ctr Text Sci &

    Technol Coll Mat Sci &

    Engn State Key Lab Modificat Chem Fibers &

    Polymer Mat 2999 North Renmin Rd Shanghai 201620 Peoples R China;

    Donghua Univ Innovat Ctr Text Sci &

    Technol Coll Mat Sci &

    Engn State Key Lab Modificat Chem Fibers &

    Polymer Mat 2999 North Renmin Rd Shanghai 201620 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号