首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Inner space- and architecture-controlled nanoframes for efficient electro-oxidation of liquid fuels
【24h】

Inner space- and architecture-controlled nanoframes for efficient electro-oxidation of liquid fuels

机译:内部空间和建筑控制纳米罩,用于液体燃料的有效电氧化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Atomic control of the architecture, composition, and surface of multimetallic nanocrystals enables considerable enhancement of their electrocatalytic performance for renewable energy innovations. Herein, we report a general and facile approach for the synthesis of Pt-based nanoframe (NF) electrocatalysts with tunable inner architecture and surface configuration, which exhibit enhanced activity and durability towards the electro-oxidation of liquid fuels. By judiciously controlling the specific adsorption species and thus the nucleation/growth kinetics, trimetallic PtCuNi NFs with hexapod, octahedral, and concave architectures are obtained. Especially, the concave NFs show the highest specific activities towards methanol and formic acid oxidation reactions, 11.0 and 14.9 times higher than those of benchmark Pt/C, respectively, along with prolonged durability. The combination of CO stripping experiments and density functional theory (DFT) calculation reveals that the enhanced activity is derived from the optimization of defects, d-band centers, and further OH adsorption ability. For the first time, by correlating the inner architecture of NFs with the resulting electrocatalytic performance, we highlight the great potential of structural complexity for further optimization of multimetallic nanoframe electrocatalysts.
机译:多金属纳米晶体的结构,组成和表面的原子控制能够显着提高其可再生能源创新的电催化性能。在此,我们报告了一种具有可调谐内部架构和表面构造的PT基纳米克(NF)电催化剂的一般性和容易方法,其表现出增强的活性和朝向液体燃料的电氧化的耐用性。通过高智地控制特异性吸附物种,从而获得核心/生长动力学,获得具有六己端,八面体和凹形架构的粒状PTCUNINFS。特别是,凹的NF显示对甲醇和甲酸的氧化反应,11.0和14.9倍比分别基准的Pt / C,的,具有延长的耐久性更高沿最高具体活动。 CO剥离实验和密度函数理论(DFT)计算的组合揭示了增强的活性来自缺陷,D频带中心和进一步的OH吸附能力的优化。首次通过将NFS的内部结构与所产生的电催化性能相关联,我们突出了结构复杂性的巨大潜力,以进一步优化多金属纳米克雷克雷催化剂。

著录项

  • 来源
  • 作者单位

    Univ Jinan Sch Chem &

    Chem Engn Jinan 250022 Shandong Peoples R China;

    Univ Jinan Sch Chem &

    Chem Engn Jinan 250022 Shandong Peoples R China;

    Univ Jinan Sch Chem &

    Chem Engn Jinan 250022 Shandong Peoples R China;

    Peking Univ Dept Mat Sci &

    Engn Coll Engn Beijing 100871 Peoples R China;

    Univ Jinan Sch Chem &

    Chem Engn Jinan 250022 Shandong Peoples R China;

    Univ Jinan Sch Chem &

    Chem Engn Jinan 250022 Shandong Peoples R China;

    China Univ Petr State Key Lab Heavy Oil Proc Beijing 102249 Peoples R China;

    China Univ Petr State Key Lab Heavy Oil Proc Beijing 102249 Peoples R China;

    Univ Jinan Sch Chem &

    Chem Engn Jinan 250022 Shandong Peoples R China;

    Univ Jinan Sch Chem &

    Chem Engn Jinan 250022 Shandong Peoples R China;

    Univ Jinan Sch Chem &

    Chem Engn Jinan 250022 Shandong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号