...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >A facile solvothermal polymerization approach to thermoplastic polymer-based nanocomposites as alternative anodes for high-performance lithium-ion batteries
【24h】

A facile solvothermal polymerization approach to thermoplastic polymer-based nanocomposites as alternative anodes for high-performance lithium-ion batteries

机译:热塑性聚合物基纳米复合材料作为高性能锂离子电池的替代阳极的容纳溶剂热聚合方法

获取原文
获取原文并翻译 | 示例
           

摘要

Conventional inorganic electrode materials for lithium-ion batteries (LIBs) face inherent limitations in electrochemical performance, natural resources, environmental issues, mechanical robustness, and cost. Organic redox polymers have recently attracted considerable attention as potential low-cost alternative electrodes for green LIBs; however, they are often employed as cathode materials. Herein a simple one-pot solvothermal polymerization approach was developed to produce graphene/chemically crosslinked poly(methyl methacrylate) (Gr/c-PMMA) composites as robust anodes for high-performance LIBs. As control samples, linear PMMA and pure c-PMMA are also solvothermally polymerized without and with the addition of a crosslinker, respectively, in the absence of graphene oxide. Such thermoplastic PMMA-based materials as anodes for LIBs exhibit a pair of stable redox peaks at 0.79 and 1.02 V over a potential range of 0.01 to 2.5 V, due to their highly reversible lithiation/delithiation of the in situ generated 1,2-cyclopentanedione active units. The reversible capacities of PMMA, c-PMMA, and Gr/c-PMMA anodes are 97, 147, and 206 mA h g(-1) at 20 mA g(-1), respectively. After increasing to 400 mA g(-1), the Gr/c-PMMA anode manifests a capacity retention of 82%, higher than those of c-PMMA (72%) and PMMA (38%) anodes. Moreover, Gr/c-PMMA delivers a high capacity of 159 mA h g(-1) after 1000 cycles at 400 mA g(-1). Notably, compared to PMMA, the better performance of c-PMMA can be attributable to the chemical crosslinking induced-formation of porous networks consisting of smaller nanoparticles (similar to 50 nm) for c-PMMA than those of PMMA (similar to 100 nm). The incorporation of uniformly dispersed graphene into c-PMMA enables the creation of 3D conductive networks with interconnected porous channels, thereby providing the efficient electrochemical activity of Gr/c-PMMA while retaining the structural integrity during cycling. This, in turn, results in a large specific capacity, a high rate capability, and a long-term cycling stability. These findings may provide new insights into the exploration of low-cost commercial plastics for rechargeable batteries as well as the possibility of other high added-value energy applications by capitalizing on recyclable plastics.
机译:用于锂离子电池(LIBS)的常规无机电极材料(LIBS)面临电化学性能,自然资源,环境问题,机械稳健性和成本中的固有局限性。有机氧化还原聚合物最近引起了相当大的关注,因为绿色LIBS的潜在低成本替代电极;然而,它们通常是作为阴极材料。在此开发了一种简单的单壶溶型溶剂热聚合方法,以生产石墨烯/化学交联的聚(甲基丙烯酸甲酯)(GR / C-PMMA)复合材料,作为高性能LIB的鲁棒阳极。作为对照样品,线性PMMA和纯C-PMMA在没有石墨烯氧化物的情况下,分别在没有添加交联剂的情况下也可以溶于溶剂热聚合。这种热塑性PMMA基材料作为Libs的阳极在0.01-2.5V的电位范围内显示出一对稳定的氧化还原峰,由于它们的高度可逆锂化/原位产生的1,2-CyclopentaneDione活动单位。 PMMA,C-PMMA和GR / C-PMMA阳极的可逆容量分别为20mA g(-1)的97,147和206mA Hg(-1)。在增加到400 mA g(-1)之后,GR / C-PMMA阳极表现出82%的容量保留,高于C-PMMA(72%)和PMMA(38%)阳极。此外,在400 mA g(-1)的1000个循环后,GR / C-PMMA在1000次循环后提供高容量的159 mA H G(-1)。值得注意的是,与PMMA相比,C-PMMA的性能更好地归因于由C-PMMA的较小纳米颗粒(类似于50nm)组成的化学交联诱导的多孔网络,而不是PMMA(类似于100nm) 。将均匀分散的石墨烯掺入C-PMMA使得能够产生具有互连的多孔通道的3D导电网络,从而提供GR / C-PMMA的有效电化学活性,同时在循环期间保持结构完整性。反过来,这导致大的特定容量,高速率能力和长期循环稳定性。这些调查结果可以为可充电电池的低成本商业塑料勘探提供新的见解,以及通过利用可回收塑料的其他高附加值能源应用的可能性。

著录项

  • 来源
  • 作者单位

    South Cent Univ Nationalities Sch Chem &

    Mat Sci Key Lab Catalysis &

    Energy Mat Chem Hubei Key Lab Catalysis &

    Mat Sci Minist Educ Wuhan 430074 Hubei Peoples R China;

    Hubei Univ Sch Mat Sci &

    Engn MOE Key Lab Green Preparat &

    Applicat Funct Mat Wuhan 430062 Hubei Peoples R China;

    South Cent Univ Nationalities Sch Chem &

    Mat Sci Key Lab Catalysis &

    Energy Mat Chem Hubei Key Lab Catalysis &

    Mat Sci Minist Educ Wuhan 430074 Hubei Peoples R China;

    South Cent Univ Nationalities Sch Chem &

    Mat Sci Key Lab Catalysis &

    Energy Mat Chem Hubei Key Lab Catalysis &

    Mat Sci Minist Educ Wuhan 430074 Hubei Peoples R China;

    South Cent Univ Nationalities Sch Chem &

    Mat Sci Key Lab Catalysis &

    Energy Mat Chem Hubei Key Lab Catalysis &

    Mat Sci Minist Educ Wuhan 430074 Hubei Peoples R China;

    South Cent Univ Nationalities Sch Chem &

    Mat Sci Key Lab Catalysis &

    Energy Mat Chem Hubei Key Lab Catalysis &

    Mat Sci Minist Educ Wuhan 430074 Hubei Peoples R China;

    Georgia Inst Technol Sch Mat Sci &

    Engn Atlanta GA 30332 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号