首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >A high-performance cupric oxide photocatalyst with palladium light trapping nanostructures and a hole transporting layer for photoelectrochemical hydrogen evolution
【24h】

A high-performance cupric oxide photocatalyst with palladium light trapping nanostructures and a hole transporting layer for photoelectrochemical hydrogen evolution

机译:具有钯光捕获纳米结构的高性能铜氧化物光催化剂和用于光电化学氢进化的空穴传输层

获取原文
获取原文并翻译 | 示例
           

摘要

The high recombination rate of photogenerated electron-hole pairs, poor photocorrosion stability, and the discrepancy between the optical absorption length and charge collection efficiency of cupric oxide (CuO) are the main limiting factors of visible-light-driven CuO photocatalysts for hydrogen evolution and photocatalytic degradation of organic pollutants. In this paper, we demonstrate a novel thin CuO film photocatalyst on a fluorine doped tin oxide (FTO) coated glass substrate with low back contact resistivity, high charge collection efficiency, high optical absorption, and high photocorrosion stability for hydrogen production and photocatalytic degradation of organic pollutants. This photocatalyst was fabricated by incorporating palladium (Pd) nanostructures into CuO to form a CuO:Pd light trapping thin film. The CuO:Pd light trapping thin film was then sandwiched between a nitrogen doped cupric oxide [CuO(N)] hole transporting layer and a CuO capping layer [CuO(N)-CuO:Pd-CuO]. The performance of the CuO(N)-CuO:Pd-CuO photocatalyst is further improved by incorporating a ZnO buffer layer and TiO2 protective layer, and decorating with a AuPd co-catalyst. Moreover, we demonstrate a significant improvement of photocorrosion stability and photocatalytic degradation efficiency of the CuO(N)-CuO:Pd-CuO-ZnO-TiO2 photocatalyst through plasma assisted in situ nano-crystal engineering of the ZnO buffer layer and TiO2 protective layer. The fabricated novel photocatalyst could retain 95% of the initial photocurrent density after 6 hours of standard illumination with solar light and could give a record high photocurrent density of similar to 8 mA cm(-2) for the CuO photocatalyst.
机译:光生电子 - 空穴对的高重组速率,光腐蚀稳定性差和铜氧化铜(CUO)的光吸收长度和电荷收集效率之间的差异是氢进化的可见光CuO光催化剂的主要限制因素有机污染物的光催化降解。在本文中,我们在氟掺杂氧化锡(FTO)涂覆的玻璃基板上展示了一种具有低背电阻率,高电荷收集效率,高光学吸收和高光腐蚀稳定性的氟掺杂氧化锡(FTO)涂覆玻璃基板上的新型薄Cuo膜光催化剂,以及用于氢催化和光催化降解的高电荷收集效率,高光腐蚀稳定性有机污染物。通过将钯(Pd)纳米结构掺入CuO以形成CuO:Pd光捕获薄膜来制造该光催化剂。然后将CuO:Pd光捕获薄膜夹在氮掺杂的氧化铜氧化物[CuO(n)]空穴输送层和CuO封端层[CuO(n)-Cuo:Pd-CuO]之间。通过掺入ZnO缓冲层和TiO 2保护层并用AUPD助催化剂装饰,进一步提高CuO(N)-Cuo:Pd-CuO光催化剂的性能。此外,我们证明了CuO(n)-Cuo:Pd-CuO-ZnO-TiO2光催化剂的显着改善了CuO(n) - Cuo:Pd-CuO-ZnO-TiO2光催化剂,通过血浆辅助ZnO缓冲层和TiO2保护层的原位纳米晶体工程。制造的新型光催化剂可以在与太阳光线的标准照明6小时后保留95%的初始光电流密度,并且可以给出与CUO光催化剂相似的高光电流密度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号