...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers
【24h】

How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers

机译:铅卤化物钙铅边的缺陷耐受程度有多远? 引入有效的重组中心的BI杂质的实例

获取原文
获取原文并翻译 | 示例
           

摘要

One of the key properties of lead-halide perovskites employed in solar cells is the defect tolerance of the materials, in particular regarding intrinsic point defects, which mainly form shallow traps. Considering that high luminescence yields and photovoltaic performance are obtained by simple solution processing from commercial chemicals, it is commonly anticipated that the defect tolerance - at least to a considerable degree - extends to grain boundaries and extrinsic defects, i.e. impurities, as well. However, the effect of impurities has hardly been investigated. Here, we intentionally introduce small quantities of bismuth (10 ppm to 2%) in solution to be incorporated in the perovskite films based on mixed cation mixed anion compositions. We observe that Bi impurities in the %-regime reduce charge carrier collection efficiency and, more importantly, that the open-circuit voltage decreases systematically with impurity concentration even in the ppm regime. This strong defect intolerance against Bi impurities comes along with reduced electroluminescence yields and charge carrier lifetimes obtained from transient photoluminescence experiments. Calculations based on molecular dynamics and density functional theory predict delocalized (approximate to 0.16 eV) and localized deep (approximate to 0.51 eV) trap states dependent on the structural arrangement of the surrounding atoms. Structural characterization supports the idea of Bi being present as a homogeneously spread point defect, which substitutes the Pb2+ by Bi3+ as seen from XPS and a reduction of the lattice parameter in XRD. Sensitive measurements of the photocurrent (by FTPS) and surface photovoltage (SPV) confirm the presence of tail states. Photoelectron spectroscopy measurements show evidence of a deep state. These results are consistent with the common idea of shallow traps being responsible for the reduced charge collection efficiency and the decreased fill factor, and deeper traps causing a substantial reduction of the open-circuit voltage. As Bi is only one potential impurity in the precursor salts used in perovskite solar cell fabrication, our findings open-up a research direction focusing on identifying and eliminating impurities that act as recombination centers - a topic that has so far not been fully considered in device optimization studies.
机译:太阳能电池中使用的卤化卤化镓钙钛矿的关键特性是材料的缺陷耐受性,特别是关于本质点缺陷,主要形成浅陷阱。考虑到通过简单的商业化学品的溶液加工获得高发光产量和光伏性能,通常预期缺陷耐受性 - 至少在相当程度上 - 延伸到晶界和外在缺陷,即杂质。然而,杂质几乎没有研究过的效果。在这里,我们有意地将少量的铋(10ppm至2%)在基于混合阳离子混合阴离子组合物中掺入钙钛矿薄膜中。我们观察到%-Regime中的BI杂质降低了电荷载流子收集效率,更重要的是,即使在PPM制度中,开路电压也通过杂质浓度系统地减小。这种对Bi杂质的这种强烈的缺陷不耐受以及从瞬态光致发光实验获得的电致发光产量和电荷载体寿命。基于分子动力学和密度函数理论的计算预测截匙(近似为0.16eV),并局限性深度(近似为0.51eV)捕集状态取决于周围原子的结构布置。结构表征支持BI的概念作为均匀的扩散点缺陷,其通过XPS从XPS和XRD中的晶格参数的减少而代替PB2 +。光电流(通过FTPS)和表面光伏(SPV)的敏感测量确认存在尾部状态。光电子体光谱测量结果显示了深度状态的证据。这些结果与浅陷阱的常见概念一致负责降低电荷收集效率和降低填充因子,更深的陷阱导致显着降低开路电压。由于BI仅在Perovskite太阳能电池制造中使用的前体盐中的一种潜在杂质,我们的研究结果开辟了一种研究方向,其专注于识别和消除充当重组中心的杂质 - 这是一个迄今未在设备中完全考虑的主题优化研究。

著录项

  • 来源
  • 作者单位

    Ecole Polytech Fed Lausanne Lab Photomol Sci Stn 6 CH-1015 Lausanne Switzerland;

    Ecole Polytech Fed Lausanne Lab Photomol Sci Stn 6 CH-1015 Lausanne Switzerland;

    Univ Rome Sapienza Dept Mech &

    Aerosp Engn Via Eudossiana 18 I-00184 Rome Italy;

    Ecole Polytech Fed Lausanne Lab Photomol Sci Stn 6 CH-1015 Lausanne Switzerland;

    Ecole Polytech Fed Lausanne Inst Microengn IMT Photovolta &

    Thin Film Elect Lab PV Lab Rue Maladiere CH-2002 Neuchatel Switzerland;

    MIT 77 Massachusetts Ave Cambridge MA 02139 USA;

    Univ Cologne Dept Chem D-50939 Cologne Germany;

    Ecole Polytech Fed Lausanne Lab Photomol Sci Stn 6 CH-1015 Lausanne Switzerland;

    Ecole Polytech Fed Lausanne Inst Microengn IMT Photovolta &

    Thin Film Elect Lab PV Lab Rue Maladiere CH-2002 Neuchatel Switzerland;

    Univ Nacl Rio Cuarto Dept Quim X5804BYA Rio Cuarto Cordoba Argentina;

    Julius Maximilian Univ Wurzburg Expt Phys 6 D-97074 Wurzburg Germany;

    Julius Maximilian Univ Wurzburg Expt Phys 6 D-97074 Wurzburg Germany;

    MIT 77 Massachusetts Ave Cambridge MA 02139 USA;

    Univ Hong Kong Dept Elect &

    Elect Engn Pok Fu Lam Rd Hong Kong Peoples R China;

    Univ Cagliari Dipartimento Fis CNR IOM Cittadella Univ SP Monserrato Sestu Km 0 700 I-09042 Monserrato CA Italy;

    Helmholtz Zentrum Berlin Mat &

    Energie GmbH Inst Siliziumphotovolta Kekulestr 5 D-12489 Berlin Germany;

    Univ Cologne Dept Chem D-50939 Cologne Germany;

    MIT 77 Massachusetts Ave Cambridge MA 02139 USA;

    Ecole Polytech Fed Lausanne Lab Photomol Sci Stn 6 CH-1015 Lausanne Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号