...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Simultaneous reduction of surface, bulk, and interface recombination for Au nanoparticle-embedded hematite nanorod photoanodes toward efficient water splitting
【24h】

Simultaneous reduction of surface, bulk, and interface recombination for Au nanoparticle-embedded hematite nanorod photoanodes toward efficient water splitting

机译:Au纳米粒子嵌入式赤铁矿纳米罗德光阳极朝向高效水分裂的表面,体积和界面重组的同时减少

获取原文
获取原文并翻译 | 示例
           

摘要

Solar water splitting has received increasing attention as a very promising strategy to produce clean hydrogen fuels. This work presents a novel design consisting of an Au-embedded Fe2O3 nanorod (NR) structures on an iron substrate as the photoanode, and demonstrates the effects of Au nanoparticles in the bulk and interface layers, and self-cocatalyst treatment for solar water splitting. A synergistic effect of the Au nanoparticles and oxygen vacancies on the Fe2O3 NRs allows the electrons and holes to have relatively high mobility for suppressing charge recombination. The metallic nature of the Au layer located at the interface between NRs and the compact oxide layer results in more efficient electron transfer from NRs to the back side. The crystalline-core/amorphous-shell structure further facilitates the transfer of holes to the electrode/electrolyte interface for oxidation reaction. Upon the configuration established, a higher photocurrent with a low onset potential is achieved for the Au/Fe2O3 NRs photoanode under AM 1.5G illumination. The improved photoelectrochemical performance is ascribed to improved light harvesting, increased charge carrier density, and suppressed charge recombination at the hematite/electrolyte and hematite/substrate interfaces. Most importantly, such a facile approach can simultaneously reduce the surface, bulk, and interface recombination characteristic of hematite photoanodes grown on iron substrates.
机译:太阳能拆分已经引起了越来越多的关注,作为生产清洁氢燃料的非常有希望的策略。该工作提出了一种新颖的设计,其由铁基材上的Au-嵌入的Fe2O3纳米棒(NR)结构组成,作为光电码,并证明了Au纳米颗粒在散装和界面层中的影响,以及用于太阳能分裂的自助催化剂处理。 Au纳米颗粒和Fe2O3 NRS上的氧空位的协同效应允许电子和孔具有相对高的迁移率来抑制电荷重组。位于NRS和致密氧化物层之间的界面处的AU层的金属性质导致从NRS到后侧的更有效的电子转移。结晶芯/无定形壳结构进一步促进孔的转移到电极/电解质界面以进行氧化反应。在构造建立时,对于AM / Fe2O3 NRS光电在AM 1.5G照明下,可以实现具有低发作电位的更高的光电流。改善的光电化学性能归因于在赤铁矿/电解质和赤铁矿/基板接口处改善光收集,增加的电荷载体密度和抑制电荷重组。最重要的是,这种容易方法可以同时减小在铁基板上生长的赤铁矿光秃秃的表面,体积和接口重组特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号