...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Oxygen loss and surface degradation during electrochemical cycling of lithium-ion battery cathode material LiMn2O4
【24h】

Oxygen loss and surface degradation during electrochemical cycling of lithium-ion battery cathode material LiMn2O4

机译:锂离子电池阴极材料电化学循环期间的氧气损失和表面劣化LiMn2O4

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Electrode surfaces play a critical role in determining the electrochemical performance of lithium-ion batteries, and uncovering how surface chemistry and structure evolve during cycling, particularly at the atomic level, is necessary for improved battery materials design. We report a scanning transmission electron microscopy (STEM) investigation into the atomistic mechanisms behind surface reconstruction induced by electrochemical cycling of cathode material LiMn2O4. Direct STEM observations reveal that surface layers of as-synthesised LiMn2O4 thin films are subject to considerable compressive lattice strain as a result of oxygen deficiency. During the first charge, the lattice strain increases significantly, resulting in a reconstruction reaction to form Mn3O4 with further loss of oxygen from the topmost layers. Continued cycling leads to deterioration of surface crystallinity. The observed irreversible structure changes affect charge transfer reaction kinetics at LiMn2O4 surfaces because Li pathways become blocked by Mn atoms, contributing to a reduction in long-term cycle life and energy capacity. The ability to observe atomic-level changes at electrode surfaces at different stages of cycling provides a more robust understanding of electrode processes that can accelerate development of safer and longerlasting battery materials.
机译:电极表面在确定锂离子电池的电化学性能方面发挥着关键作用,并且揭示了在循环期间的表面化学和结构在循环期间进化,特别是在原子水平,对于改进的电池材料设计是必要的。我们将扫描透射电子显微镜(Stem)调查报告到阴极材料的电化学循环引起的表面重建后的原子机制研究。直接茎观察显示,由于缺氧,如合成的LiMn2O4薄膜的表面层受到相当大的压缩晶格菌株。在第一电荷期间,晶格应变显着增加,导致重建反应形成Mn3O4,从最顶层进一步损失氧气。持续的循环导致表面结晶度的劣化。观察到的不可逆结构会影响LiMn2O4表面的电荷转移反应动力学,因为Li途径被Mn原子阻挡,有助于降低长期循环寿命和能量容量。在循环的不同阶段观察电极表面处的原子水平变化的能力为电极工艺提供了更强大的理解,该电极过程可以加速更安全和较长的电池材料的发育。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号