首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Designing highly efficient dual-metal single-atom electrocatalysts for the oxygen reduction reaction inspired by biological enzyme systemsf
【24h】

Designing highly efficient dual-metal single-atom electrocatalysts for the oxygen reduction reaction inspired by biological enzyme systemsf

机译:设计高效的双金属单原子电催化剂,用于通过生物酶系统的氧还原反应

获取原文
获取原文并翻译 | 示例
           

摘要

Biological heme-copper oxidases (HCOs) play a critical role in the four-electron, four-proton reduction of O2 to H2O in biosystems. HCOs exhibit high enzymatic activity due to their natural structure with heme-non-heme metal active sites, and the non-heme metal plays a role in conferring and fine-tuning the O2 reduction activity of the HCOs. Inspired by this binuclear active enzyme, herein, we designed an efficient electrocatalyst (Fe, Mn-N/C) for the oxygen reduction reaction, which contains two types of metal-N_x active site incorporated within the graphene framework of porous carbon. The catalyst displayed remarkable ORR performance with a half-potential of 0.904 V and kinetic current density of 33.33 mA cm~(-2), which is 4.9 times that of 20% Pt/C (6.76 mA cm~(-2)). When the Fe, Mn-N/C catalyst was applied as an air electrode in a Zn-air battery, it exhibited a superior performance compared to commercial Pt/C. Its discharge curve showed that the change in output voltage was negligible at 20 mA cm~(-2) for 23 000 seconds (6.4 h). First principles calculations revealed that Fe, Mn-N/C needs less energy for the protonation of O* to OH* in ORR procedures compared with Fe-N/C. This catalyst, with its bimetal reactive center mimicking a metal enzyme, will pave a new way to design efficient electrocatalysts for the ORR in fuel cells.
机译:生物血红素氧化酶(HCOS)在生物系统中的四个电子中,在O2至H2O的四个电子中发挥着关键作用。 HCOS由于其具有血红素 - 非血红金属活性位点的天然结构而表现出高酶活性,并且非血红素金属在赋予和微调HCO的O2减少活性方面发挥作用。通过这种双核活性酶的启发,我们设计了用于氧还原反应的有效电催化剂(Fe,Mn-N / C),其含有两种类型的金属-N_x活性位点,其包含在多孔碳的石墨烯框架内。催化剂显示出卓越的ORR性能,半电位为0.904 V,动力电流密度为33.33 mA cm〜(-2),为20%Pt / C(6.76 mA cm〜(-2))的4.9倍。当Fe,Mn-N / C催化剂作为空气电极施加在Zn空气电池中时,与商业Pt / c相比,它表现出优异的性能。其放电曲线表明,在20mA cm〜(-2)的输出电压变化可忽略不计23000秒(6.4小时)。第一个原理计算显示,与Fe-N / C相比,Fe,Mn-N / C在ORR程序中,ORR程序中的质量较少。该催化剂与其二聚体反应性中心模仿金属酶,将为燃料电池中的ORR设计有效的电催化剂。

著录项

  • 来源
  • 作者单位

    Hefei National Laboratory for Physical Sciences at the Microscale Department of Materials Science &

    Engineering Collaborative Innovation Center of Suzhou Nano Science and Technology University of Science and Technology of China Hefei 230026 China.;

    Hefei National Laboratory for Physical Sciences at the Microscale Department of Materials Science &

    Engineering Collaborative Innovation Center of Suzhou Nano Science and Technology University of Science and Technology of China Hefei 230026 China.;

    Hefei National Laboratory for Physical Sciences at the Microscale Department of Materials Science &

    Engineering Collaborative Innovation Center of Suzhou Nano Science and Technology University of Science and Technology of China Hefei 230026 China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号