...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Highly porous carbon-coated silicon nanoparticles with canyon-like surfaces as a high-performance anode material for Li-ion batteries
【24h】

Highly porous carbon-coated silicon nanoparticles with canyon-like surfaces as a high-performance anode material for Li-ion batteries

机译:高度多孔的碳涂覆的硅纳米颗粒,其用罐状表面作为锂离子电池的高性能阳极材料

获取原文
获取原文并翻译 | 示例
           

摘要

This paper reports unique highly porous carbon-coated Si nanoparticles with canyon-like surfaces (cpSi@C) prepared by pseudomorphic transformation of wrinkled silica nanoparticles (WSNs) via magnesiothermic reduction and subsequent pyrolytic deposition of carbon. The pseudomorphic transformation of soft-template-based WSNs with large pore dimensions provides Si nanoparticles with additional porosity owing to their unique canyon-like surface structure. This degree of porosity is not achievable using conventional soft-template-derived porous SiO2 materials owing to their smaller pore dimensions. The free volume space in the cpSi@C particles is 419% of their Si volume, which is sufficient to fully accommodate Si volume expansion during cycling. Furthermore, the conformal carbon coating allows cpSi@C to enhance its electrical conductivity. cpSi@C exhibits a high specific charge capacity of 822 mA h g(-1) after 200 cycles at a current density of 0.5 A g(-1), which is 59.1% of the initial charge capacity. A comparative study with respect to other porous Si-based materials clearly revealed that the unique canyon-like structure synthesized in this study, with its additional pore volume and smaller Si dimensions, exhibits enhanced electrochemical performance.
机译:本文将独特的高度多孔碳涂覆的Si纳米颗粒报告,用浓度的二甲硅纳米粒子(WSNS)通过镁热还原和随后的碳的热解性沉积制备的罐状表面(CPSI @ C)。基于软模板的WSN具有大孔径的假形晶体转化为Si纳米颗粒提供了由于其独特的峡谷状表面结构而具有额外的孔隙率。由于其较小的孔径,使用常规的软模板衍生的多孔SiO 2材料不能实现这种孔隙度。 CPSI @ C颗粒中的自由体积空间为其Si体积的419%,足以在循环期间完全适应Si体积扩张。此外,保形碳涂层允许CPSI @ C提高其电导率。在电流密度为0.5Ag(-1)的200次循环后,CPSI @ C在200次循环之后展示了822mA H G(-1)的高比电荷容量,这是初始充电容量的59.1%。关于其他多孔Si基材料的比较研究清楚地表明,本研究中合成的独特的峡谷样结构,其额外的孔体积和更小的Si尺寸,具有增强的电化学性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号