...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Nanosheet-assembled, hollowed-out hierarchical gamma-Fe2O3 microrods for high-performance gas sensing
【24h】

Nanosheet-assembled, hollowed-out hierarchical gamma-Fe2O3 microrods for high-performance gas sensing

机译:用于高性能气体传感的纳米齿组装,镂空的分层γ-FE2O3 MICROROD

获取原文
获取原文并翻译 | 示例

摘要

Preventing the stacking of two-dimensional (2D) structured nanomaterials is important for developing high-performance gas sensors. To address this challenge, three-dimensional (3D) hollowed-out hierarchical Fe2O3 microrods assembled by nanosheets were successfully fabricated via a facile MgO-mediated chemical template conversion strategy. Structurally, the large active surface area of the microrods significantly enhanced gas adsorption, thereby resulting in a high response. Additionally, the hollow interior and the well-aligned porous structure between adjacent nanosheets were favorable for the rapid diffusion of detected gases, reducing the response/recovery times. Gas sensing measurements revealed that the nanosheet-assembled, hollowed-out hierarchical gamma-Fe2O3 microrods calcined at 300 degrees C (i.e., Fe2O3-300) exhibited the best performance among the as-prepared samples with different phases. Strikingly, the sensitivity to 100 ppm acetone at 220 degrees C reached 125.5, and the response/recovery times were only 0.9/15 s, respectively. Compared to alpha-Fe2O3 obtained at 500 degrees C (i.e., Fe2O3-500), Fe2O3-300 with the gamma-phase exhibits superior capacity to chemisorb oxygen and the bulk resistance effect, which are intrinsically beneficial for enhancing its gas sensing performance. In addition, the as-synthesized nanosheet-assembled, hollowed-out hierarchical gamma-Fe2O3 microrods exhibited outstanding repeatability and remarkable long-term stability, which suggests their potential application in fabricating highly sensitive gas sensors. This work provides a viable approach for synthesizing various nanosheet-assembled, hollowed-out hierarchical metal oxides.
机译:防止二维(2D)结构纳米材料的堆叠对于开发高性能气体传感器是重要的。为了解决这一挑战,通过容易的MgO介导的化学模板转化策略成功地制造了纳米晶片组装的三维(3D)挖掘分层Fe2O3微孔。在结构上,微摩擦的大主动表面积显着增强了气体吸附,从而导致高响应。另外,相邻纳米片之间的中空内部和对齐的多孔结构是有利于检测到的气体的快速扩散,从而降低响应/恢复时间。气体传感测量显示,在300摄氏度(即Fe 2 O 3 -300)以300摄氏度煅烧的纳米片组装的挖空分层γ-Fe2O3微孔表现出具有不同阶段的制备样品中的最佳性能。尖锐地,在220℃下达到125.5的100ppm丙酮的敏感性,响应/恢复时间分别仅为0.9 / 15 s。与500摄氏度(即Fe 2 O 3 -500)获得的α-Fe 2 O 3相比,具有γ相的Fe 2 O 3 -300表现出优异的化学氧气能力和散热效应,这对于提高其气体传感性能,本质上有利于其本质上有益。此外,作为合成的纳米片组装的挖空分层γ-Fe2O3微孔表现出优异的可重复性和显着的长期稳定性,这表明它们在制造高敏感的气体传感器方面的潜在应用。这项工作提供了一种合成各种纳米片组装的挖掘分层金属氧化物的可行方法。

著录项

  • 来源
  • 作者单位

    Xiamen Univ Collaborat Innovat Ctr Chem Energy Mat Dept Chem State Key Lab Phys Chem Solid Surfaces Coll Chem Xiamen 361005 Peoples R China;

    Xiamen Univ Collaborat Innovat Ctr Chem Energy Mat Dept Chem State Key Lab Phys Chem Solid Surfaces Coll Chem Xiamen 361005 Peoples R China;

    Xiamen Univ Collaborat Innovat Ctr Chem Energy Mat Dept Chem State Key Lab Phys Chem Solid Surfaces Coll Chem Xiamen 361005 Peoples R China;

    Xiamen Univ Collaborat Innovat Ctr Chem Energy Mat Dept Chem State Key Lab Phys Chem Solid Surfaces Coll Chem Xiamen 361005 Peoples R China;

    Xiamen Univ Collaborat Innovat Ctr Chem Energy Mat Dept Chem State Key Lab Phys Chem Solid Surfaces Coll Chem Xiamen 361005 Peoples R China;

    Xiamen Univ Collaborat Innovat Ctr Chem Energy Mat Dept Chem State Key Lab Phys Chem Solid Surfaces Coll Chem Xiamen 361005 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号