...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Anchoring MOF-derived CoS2 on sulfurized polyacrylonitrile nanofibers for high areal capacity lithium-sulfur batteries
【24h】

Anchoring MOF-derived CoS2 on sulfurized polyacrylonitrile nanofibers for high areal capacity lithium-sulfur batteries

机译:将MOF衍生的COS2锚固在硫化聚丙烯腈纳米纤维上,用于高面积容量锂 - 硫磺电池

获取原文
获取原文并翻译 | 示例

摘要

Sulfurized polyacrylonitrile (SPAN) is attractive as one of the most promising cathode candidates for commercial lithium-sulfur (Li-S) batteries due to its outstanding capacity reversibility and structural stability. However, the limited sulfur content of similar to 40 wt% in the composite hinders its practical applications owing to insufficient areal/volumetric energy density, especially when used as flexible cathodes for wearable energy storage devices. Here, we report an ultrathin and condensed SPAN film synthesized via the in situ growth of ZIF-67 on electrospun fibers composed of PAN and CNTs, followed by a vulcanization process to generate surface-anchored CoS2 that effectively suppresses fiber swelling and film thickening. Simultaneously, conductive CoS2 helps expedite the redox kinetics of sulfur conversion for achieving high-performance Li-S cells with much improved areal capacity. This study refreshes current performance of SPAN cells with an ultrahigh initial areal capacity of 8.1 mA h cm(-2) at a sulfur loading of up to 5.9 mg cm(-2), as well as a superior capacity of 1322 mA h g(-1) in the prototype pouch cell, demonstrating great prospects of the employed protocol for realizing flexible Li-S batteries with high energy density.
机译:硫化聚丙烯腈(跨度)由于其出色的容量可逆性和结构稳定性,作为商用锂 - 硫(LI-S)电池最有前途的阴极候选者之一具有吸引力。然而,由于面积/体积能量密度不足,因此在复合材料中类似于40wt%的有限硫含量阻碍了其实际应用,特别是当用作可穿戴能量存储装置的柔性阴极时。这里,我们报告了通过ZIF-67的原位生长在由PAN和CNT构成的ZIF-67上的原位生长合成的超薄和冷凝跨膜,其次是硫化过程,以产生有效抑制纤维膨胀和膜增厚的表面锚固COS2。同时,导电COS2有助于加快硫磺转化率的氧化还原动力学,以实现具有大大改善的面积容量的高性能Li-S细胞。本研究刷新了跨度初始量容量为8.1mA H cm(-2)的超高初始量容量的电流性能,硫负载高达5.9mg cm(-2),以及优异的容量为1322 mA hg( - 1)在原型袋细胞中,展示了采用高能量密度的柔性Li-S电池的采用方案的巨大前景。

著录项

  • 来源
  • 作者单位

    Soochow Univ Soochow Inst Energy &

    Mat Innovat Coll Energy Suzhou 215006 Peoples R China;

    Soochow Univ Soochow Inst Energy &

    Mat Innovat Coll Energy Suzhou 215006 Peoples R China;

    Soochow Univ Soochow Inst Energy &

    Mat Innovat Coll Energy Suzhou 215006 Peoples R China;

    Soochow Univ Soochow Inst Energy &

    Mat Innovat Coll Energy Suzhou 215006 Peoples R China;

    Soochow Univ Soochow Inst Energy &

    Mat Innovat Coll Energy Suzhou 215006 Peoples R China;

    Soochow Univ Soochow Inst Energy &

    Mat Innovat Coll Energy Suzhou 215006 Peoples R China;

    Soochow Univ Soochow Inst Energy &

    Mat Innovat Coll Energy Suzhou 215006 Peoples R China;

    Haike Res Inst Haike Grp Dongying 257000 Peoples R China;

    Gyeongsang Natl Univ Dept Mat Engn &

    Convergence Technol 501 Jinju Daero Jinju 52828 South Korea;

    Soochow Univ Soochow Inst Energy &

    Mat Innovat Coll Energy Suzhou 215006 Peoples R China;

    Soochow Univ Soochow Inst Energy &

    Mat Innovat Coll Energy Suzhou 215006 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号