首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Unconventionally fabricating defect-rich NiO nanoparticles within ultrathin metal-organic framework nanosheets to enable high-output oxygen evolution
【24h】

Unconventionally fabricating defect-rich NiO nanoparticles within ultrathin metal-organic framework nanosheets to enable high-output oxygen evolution

机译:非常规制造富含缺陷的缺陷的NIO NIO纳米粒子内的超薄金属 - 有机框架纳米片,以实现高输出氧气进化

获取原文
获取原文并翻译 | 示例
           

摘要

The high-temperature calcination of metal-organic frameworks (MOFs) often leads to a sharp collapse in the abundant pores inside the MOFs and a serious aggregation of metal sites, which are adverse to electrocatalysis performance. Here, a controllable calcination route was developed for the partial decomposition of ultrathin 2D Ni-based MOF (2D Ni-MOF) precursors to fabricate ultrafine NiO nanoparticles (NPs) within the ultrathin 2D Ni-MOF. In particular, 2D Ni-MOF precursors (thickness: similar to 2 nm), for the first time, were rapidly synthesized via a microwave-assisted solvothermal method. The controllable calcination route effectively retained the ultrathin 2D porous nanostructure of the MOFs, and simultaneously enabled the formation of defect-rich ultrafine NiO NPs within the 2D Ni-MOF. Benefiting from the unique nanostructure (i.e., ultrathin 2D nanosheets) and highly active sites (i.e., defect-rich NiO NPs), the partially decomposed 2D Ni-MOF-250 exhibited excellent performance for oxygen evolution reaction (OER) with an overpotential of 250 mV at 50 mA cm(-2) in 1 M KOH, outperforming those obtained from other reported nonprecious-metal-based electrocatalysts. More importantly, 2D Ni-MOF-250 could achieve the industry-related current density of 1000 mA cm(-2) at a small overpotential of 410 mV, demonstrating its promising potential for use in practical applications. Therefore, the controllable calcination route may stand out as a facile yet robust route for smartly fabricating defect-rich metal oxides within MOFs toward efficient electrocatalysis.
机译:金属 - 有机框架(MOFS)的高温煅烧通常导致MOF内的丰富孔隙剧烈塌陷和金属位点的严重聚集,这与电催化性能不利。这里,开发了可控煅烧途径,用于将超薄2D Ni的MOF(2D Ni-MOF)前体部分分解用于制造超细NiO纳米颗粒(NPS)在超薄2D Ni-MOF内。特别是,首次通过微波辅助的溶剂热法迅速合成2D Ni-MOF前体(厚度:类似于2nm)。可控煅烧路线有效地保留了MOF的超薄2D多孔纳米结构,同时使得在2D Ni-MOF内能够形成缺陷的超细NiO NP。受益于独特的纳米结构(即超薄2D纳米片)和高活性位点(即富含缺陷的NIO NIO),部分分解的2D Ni-MOF-250表现出具有250的过电位的氧气进化反应(OER)的优异性能MV在1M KOH中为50 mA cm(-2),优于从其他报告的非普烈金属基电催化剂获得的那些。更重要的是,2D NI-MOF-250可以在410 mV的小型过电位下实现1000 mA cm(-2)的行业相关电流密度,表明其在实际应用中使用的有希望的潜力。因此,可控煅烧路线可以作为容易且坚固的途径脱颖而出,用于在MOF内巧妙地制造富含缺陷的金属氧化物,朝向有效的电常见。

著录项

  • 来源
  • 作者单位

    Shenzhen Univ Coll Chem Environm Engn Shenzhen 518060 Guangdong Peoples R China;

    Shenzhen Univ Coll Chem Environm Engn Shenzhen 518060 Guangdong Peoples R China;

    Shenzhen Univ Coll Chem Environm Engn Shenzhen 518060 Guangdong Peoples R China;

    Shenzhen Univ Coll Chem Environm Engn Shenzhen 518060 Guangdong Peoples R China;

    Shenzhen Univ Coll Chem Environm Engn Shenzhen 518060 Guangdong Peoples R China;

    Shenzhen Univ Coll Chem Environm Engn Shenzhen 518060 Guangdong Peoples R China;

    Shenzhen Univ Coll Chem Environm Engn Shenzhen 518060 Guangdong Peoples R China;

    Shenzhen Univ Coll Chem Environm Engn Shenzhen 518060 Guangdong Peoples R China;

    Shenzhen Univ Coll Chem Environm Engn Shenzhen 518060 Guangdong Peoples R China;

    Shenzhen Univ Coll Chem Environm Engn Shenzhen 518060 Guangdong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号