首页> 外文期刊>Journal of Molecular Biology >Integrated Use of Biochemical, Native Mass Spectrometry, Computational, and Genome-Editing Methods to Elucidate the Mechanism of a Salmonella deglycase
【24h】

Integrated Use of Biochemical, Native Mass Spectrometry, Computational, and Genome-Editing Methods to Elucidate the Mechanism of a Salmonella deglycase

机译:生化,天然质谱,计算和基因组编辑方法的综合使用,以阐明沙门氏菌脱果壳的机制

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Salmonella is a foodborne pathogen that causes annually millions of cases of salmonellosis globally, yet Salmonella-specific antibacterials are not available. During inflammation, Salmonella utilizes the Amadori compound fructose-asparagine (F-Asn) as a nutrient through the successive action of three enzymes, including the terminal FraB deglycase. Salmonella mutants lacking FraB are highly attenuated in mouse models of inflammation due to the toxic build-up of the substrate 6-phosphofructose-aspartate (6-P-F-Asp). This toxicity makes Salmonella FraB an appealing drug target, but there is currently little experimental information about its catalytic mechanism. Therefore, we sought to test our postulated mechanism for the FraB-catalyzed deglycation of 6-P-F-Asp (via an enaminol intermediate) to glucose-6-phosphate and aspartate. A FraB homodimer model generated by RosettaCM was used to build substrate-docked structures that, coupled with sequence alignment of FraB homologs, helped map a putative active site. Five candidate active-site residues-including three expected to participate in substrate binding-were mutated individually and characterized. Native mass spectrometry and ion mobility were used to assess collision cross sections and confirm that the quaternary structure of the mutants mirrored the wild type, and that there are two active sites/homodimer. Our biochemical studies revealed that FraB Glu214Ala, Glu214Asp, and His230Ala were inactive in vitro, consistent with deprotonated-Glu214 and protonated-His230 serving as a general base and a general acid, respectively. Glu214Ala or His230Ala introduced into the Salmonella chromosome by CRISPR/Cas9-mediated genome editing abolished growth on F-Asn. Results from our computational and experimental approaches shed light on the catalytic mechanism of Salmonella FraB and of phosphosugar deglycases in general. (C) 2019 Elsevier Ltd. All rights reserved.
机译:沙门氏菌是食源性病原体引起,每年数以百万计沙门氏菌病例在全球范围,但沙门氏菌特有的抗菌药物不可用。在炎症过程中,沙门氏菌利用阿马多利化合物的果糖天冬酰胺(F-ASN)通过三种酶,包括终端FRAB deglycase的连续动作的营养物。缺乏FRAB沙门氏菌突变体高度减毒在炎症小鼠模型中由于有毒的堆积基板6-磷酸果糖天冬氨酸(6-P-F-ASP)的。这使得毒性沙门氏菌FRAB一个有吸引力的药物靶标,但目前关于它的催化机理的小实验信息。因此,我们试图测试我们的6-P-F-天冬氨酸的FRAB催化去糖基化假定的机制(通过enaminol中间体)为葡萄糖-6-磷酸和天冬氨酸。通过RosettaCM产生的同型二聚体FRAB模型用于构建基板对接结构,其加上FRAB同源物的序列比对,帮助映射推定的活性位点。五个候选活性位点残基,包括三名有望参与底物结合,单独突变和表征。天然质谱法和离子迁移率被用来评估碰撞截面并确认该突变体的四级结构镜像野生型,并且有两个活性位点/同型二聚体。我们的生物化学研究表明,FRAB Glu214Ala,Glu214Asp,和His230Ala在体外无活性的,与去质子化-Glu214一致和质子化-His230分别用作一般碱和酸一般,。 Glu214Ala或His230Ala引入由CRISPR / Cas9介导的基因组中的染色体沙门氏菌编辑基于F-ASN废除增长。从我们的计算和实验方法的结果阐明了沙门氏菌FRAB的催化机理和一般phosphosugar deglycases的。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号