...
首页> 外文期刊>Journal of Molecular Liquids >Unsteady mixed convective flow of Williamson nanofluid with heat transfer in the presence of variable thermal conductivity and magnetic field
【24h】

Unsteady mixed convective flow of Williamson nanofluid with heat transfer in the presence of variable thermal conductivity and magnetic field

机译:威廉姆森纳米流体的不稳定混合对流流动,在可变导热率和磁场存在下传热

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Latest developments regarding thermo-physical features of flow and heat transfer for non-Newtonian fluids in the presence of nanoparticles have been drawing the attention of many engineers and researchers due to their improved heat transfer features. Amongst several available techniques to reinforce the thermal performance of energy systems, one is the dispersion of solid nanoparticles in base fluids like water. Owing to recent developments in this regard, this communication focuses on time-dependent flow of non-Newtonian Williamson fluid driven by a radially stretching geometry with nanoparticles. The analysis is subject to the effects of variable magnetic field, mixed convection and newly proposed zero nanoparticles mass flux condition. The mathematical formulation is presented with the assistance of basic conservation laws and boundary layer assumptions. The leading transport equations for nanofluid flow have been converted into a system of strongly non-linear ordinary differential equations by employing dimensionless variables. The non-linearity numerical scheme known as Runge-Kutta integration scheme has been implemented to obtain the numerical results for velocity, temperature and concentration fields for numerous set of physical parameters. In this review, impacts of developing parameters on flow field variables are visualized through tables and graphs. The obtained results demonstrate that a higher magnetic field reduces the nanofluids velocity as well as momentum boundary layer thickness. We observe an increment in the rate of heat transfer with Schmidt number. Moreover, it is concluded that an increasing trend is seen in nanofluids temperature with greater thermophoresis parameter. In addition, the numerical results acquired by the applied technique are validated with existing data and excellent correlation is noted. (C) 2018 Elsevier B.V. All rights reserved.
机译:关于纳米粒子存在的非牛顿流体的流动和热传递热物理特征的最新发展已经引起了许多工程师和研究人员的注意,这是由于它们改善的传热特征。在几种可用技术中,为了加强能量系统的热性能的技术,一个是固体纳米颗粒在水中的基础流体中的分散。由于在这方面的最新进展之外,该通信专注于由径向拉伸几何形状驱动的非牛顿威廉姆森流体的时间依赖性流动。分析受变磁场,混合对流和新提出的零纳米颗粒质量通量条件的影响。在基本保护法和边界层假设的帮助下提出了数学制定。通过使用无量纲变量,已经将纳米流体流动的领先传送方程转换成强烈非线性常微分方程的系统。已经实施了称为runge-Kutta集成方案的非线性数值方案,以获得许多物理参数的速度,温度和浓度场的数值结果。在本次审查中,通过表和图形可视化开发参数对流场变量的影响。所得结果表明,较高的磁场降低了纳米流体速度以及动量边界层厚度。我们观察到施密特数量的热传递速度增加。此外,得出结论是,纳米流体温度越来越多的趋势,具有更大的热噬菌体参数。另外,通过现有数据验证了由所应用的技术获取的数值结果,并指出了优异的相关性。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号