Ab'/> Energy transfer through mixed convection within square enclosure containing micropolar fluid with non-uniformly heated bottom wall under the MHD impact
首页> 外文期刊>Journal of Molecular Liquids >Energy transfer through mixed convection within square enclosure containing micropolar fluid with non-uniformly heated bottom wall under the MHD impact
【24h】

Energy transfer through mixed convection within square enclosure containing micropolar fluid with non-uniformly heated bottom wall under the MHD impact

机译:通过在MHD撞击下,通过含有微柱液的方形外壳内的混合对流进行能量传递,下撞击底壁不均匀

获取原文
获取原文并翻译 | 示例
           

摘要

AbstractPresent investigation conveys computations for mixed convective energy flow through a square container carrying micropolar fluid under the influence of constant horizontal magnetic field. Bottom wall of an enclosure is subject to non-uniform heating profile while remaining walls of an enclosure are maintained at low temperature. Numerical simulations are computed incorporating Galerkin method of Finite element scheme against various values of involved parameters like Grashof number, Reynolds number, Hartmann number and micropolar parameter. It has been observed that strength of stream line circulations escalates with augmentation in Grashof (Gr) number where it attenuates with augmentation in Hartmann (Ha) and Reynolds (Re) numbers. Convection regime dominates in cavity for large Grashof number and small Hartmann number. Heat transfer coefficientNurises with surge in Reynolds number, Hartmann number and micropolar parameter and it reduces with rise in Grashof number along upper boundary where overall heat flow rate is increasing function of Grashof number and decreasing function of Reynolds and Hartmann number along bottom wall.Highlights?Augm
机译:<![CDATA [ 抽象 本研究传达计算混合对流能量流过方形容器的恒定水平磁场的影响下携带微极流体场地。外壳的底壁受到不均匀的加热分布,而外壳的其余壁被保持在低的温度。数值仿真计算结合针对像格拉斯霍夫数,雷诺数,哈特曼数和微极参数涉及的参数的不同值的有限元方案的Galerkin方法。已经观察到该流线循环的强度在格拉斯霍夫与增强升级(的Gr ),其中它与增强在哈特曼衰减(数 )和Reynolds( RE )号码。在腔体对流机制占主导地位的大型格拉斯霍夫数和小哈特曼数。传热系数上升浪涌在雷诺数,哈特曼数和微极参数,并将其与上升格拉斯霍夫数目沿着上边界减少,其中总的热流动速率为格拉斯霍夫数递增函数和沿底壁减小雷诺数和哈特曼数函数 亮点 Augm

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号