首页> 外文期刊>Journal of Materials Science >Silica-silane coupling agent interphase properties using molecular dynamics simulations
【24h】

Silica-silane coupling agent interphase properties using molecular dynamics simulations

机译:二氧化硅 - 硅烷偶联剂使用分子动力学模拟的间隙性能

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this paper, strength of the interphase between silica and glycidoxypropyltrimethoxy silane (GPS) coupling agent has been studied using molecular dynamics (MD) simulations. Silica-GPS interphase model is created by coupling the hydroxylated silica surface with monolayer-hydroxylated GPS molecules. The interphase model is subjected to mode-I (normal), mode-II (shear) and mixed-mode (normal-shear) mechanical loading to determine the interphase cohesive traction-separation (T-S) response (i.e., cohesive traction law). In MD simulations, atomic interactions are modeled with the reactive force field ReaxFF. Effects of interphase thickness and GPS bond density on the T-S response are studied. Simulation results indicate that interphase strength decreases with increase in the interphase thickness before attaining a plateau level at higher thickness. For a particular thickness, strength improves significantly with increase in the GPS bond density with the silica surface. Damage mode is adhesive at the silica interface at lower thickness and transitions to mixed mode and cohesive failure within the silane interphase at higher thickness. Mixed-mode T-S responses are bounded by the mode-I and mode-II responses. Characteristic parameters of the continuum-level potential-based cohesive zone model (PPR-CZM) are determined by fitting the MD-based mode-I and mode-II T-S responses with PPR-CZM functional. Development of the PPR-CZM parameters enables bridging length scales from the MD to the continuum scale for fracture modeling of the fiber-matrix interphase in composites subjected to mixed-mode loading. Results on mode-I and mode-II unloading are also presented.
机译:本文研究了二氧化硅和丙酸缩水氧基丙基三甲氧基硅烷(GPS)偶联剂之间的相互作用的强度研究了使用分子动力学(MD)模拟。通过将羟基化的二氧化硅表面与单层 - 羟基化GPS分子偶联来产生二氧化硅-GPS间型号。间间模型进行模式-I(正常),模式-II(剪切)和混合模式(常规剪切)机械负荷,以确定间间的粘性牵引分离(T-S)响应(即,粘性牵引法)。在MD模拟中,用反应力场Reaxff模拟原子相互作用。研究了相互作用厚度和GPS键合密度对T-S响应的影响。模拟结果表明,在较高厚度下达到平台水平之前,间差强度随着相互厚度的增加而降低。对于特定的厚度,强度随着具有二氧化硅表面的GPS键密度的增加而显着改善。损坏模式在较低厚度下的二氧化硅界面处粘合,并在厚度较高的硅烷间相互作用中过渡到混合模式和内聚失效。混合模式T-S响应由模式-I和模式-II响应界定。通过将基于MD的模式-I和模式-II T-S响应与PPR-CZM功能拟合,确定连续级电位的粘性区模型(PPR-CZM)的特征参数。 PPR-CZM参数的开发使得从MD的桥接长度尺度能够在经过混合模式负载的复合材料中的复合材料中的纤维 - 矩阵间的断裂建模的连续尺度。结果也介绍了模式-I和模式-II卸载。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号