...
首页> 外文期刊>Journal of Materials Science >Toward an understanding of the effect of surface roughness on instrumented indentation results
【24h】

Toward an understanding of the effect of surface roughness on instrumented indentation results

机译:朝着了解表面粗糙度对仪表压痕结果的影响

获取原文
获取原文并翻译 | 示例

摘要

Performing indentation tests on rough surfaces at the microscale creates non-negligible scatter of the load-indentation depth curves and leads to an inaccurate computation of mechanical properties. In previous work, the minimization of the error between the shapes of the experimental loading curve and the shapes predicted by Bernhardt's law enabled the macrohardness of the material to be determined with accuracy and to identify a relationship between the standard deviation of the errors of shapes and the root-mean-square roughness (S (q)) computed at the scale of the indentation imprint. In this paper, a semi-analytical model applied to roughness measurements is used to understand this relationship. Good agreement is found between the model results and the experimental results. Analysis of the semi-analytical model confirmed that the identified relationship is caused by the topography and not by some experimental bias and that the relevant scale for the computation of S (q) is the scale of the indentation imprints (15 A mu m). However, the relationships found with the model and the experimental results show different slopes and y-intercepts. The y-intercept found with the numerical curves is negligible compared with the y-intercept identified with the experimental curve, which is equal to 30 nm. This indicates that even if S (q) is equal to zero, the zero-point of the curve is not accurately determined by the instrumented indentation device. As for the differences in slope, these may be partly due to experimental noise and the differences of methodology of detections of first-contact for the recording of the load-displacement curves. Overestimation of the resistance of abrasion debris by the semi-analytical model may also explain the differences of slopes. However, further testing is required to confirm this hypothesis.
机译:在Microscale的粗糙表面上执行压痕测试,产生不可忽略的负载压痕深度曲线散射,并导致机械性能的不准确计算。在以前的工作中,最小化实验负载曲线的形状与Bernhardt定律预测的形状的误差使得能够精确地确定材料的宏观度,并识别形状误差的标准偏差之间的关系在压痕印记的比例下计算的根均方粗糙度(s(q))。在本文中,使用应用于粗糙度测量的半分析模型来了解这种关系。在模型结果和实验结果之间发现了良好的一致性。对半分析模型的分析证实了所识别的关系是由地形引起的,而不是由某种实验偏差引起的,并且S(Q)计算的相关规模是压痕印记的规模(15a mu m)。然而,用模型和实验结果发现的关系显示不同的斜坡和y截止。与用实验曲线识别的Y截距相比,用数值曲线发现的Y截距可忽略于等于30nm。这表明即使S(Q)等于零,也不是由仪表压痕装置准确地确定曲线的零点。关于斜率的差异,这些可以部分是由于实验噪声和第一接触检测方法的差异,用于记录负载 - 位移曲线。半分析模型的磨损碎片抗性的高估也可以解释斜坡的差异。但是,需要进一步测试来确认这一假设。

著录项

  • 来源
    《Journal of Materials Science 》 |2017年第12期| 共17页
  • 作者

    Marteau J.; Bigerelle M.;

  • 作者单位

    Univ Technol Compiegne Sorbonne Univ Ctr Rech Royallieu Lab Roberval UMR CNRS 7337 Compiegne France;

    Univ Valenciennes &

    Hainaut Cambresis UMR CNRS 8201 Lab Automat Mecan &

    Informat Ind &

    Humaine LAMIH Le Mont Houy Valenciennes France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号