...
首页> 外文期刊>Journal of Hydrology >Uncertainty, sensitivity and improvements in soil moisture estimation with cosmic-ray neutron sensing
【24h】

Uncertainty, sensitivity and improvements in soil moisture estimation with cosmic-ray neutron sensing

机译:宇宙射线中子传感的土壤水分估算不确定性,敏感性和改进

获取原文
获取原文并翻译 | 示例

摘要

Cosmic-ray neutron sensing (CRNS) is a promising proximal soil sensing technique to estimate soil moisture at intermediate scale and high temporal resolution. However, the signal shows complex and non-unique response to all hydrogen pools near the land surface, providing some challenges for soil moisture estimation in practical applications. Aims of the study were 1) to assess the uncertainty of CRNS as a stand-alone approach to estimate volumetric soil moisture in cropped field 2) to identify the causes of this uncertainty 3) and possible improvements. Two experimental sites in Germany were equipped with a CRNS probe and point-scale soil moisture network. Additional monitoring activities were conducted during the crop growing season to characterize the soil-plant systems. This data is used to identify and quantify the different sources of uncertainty (factors). An uncertainty analysis, based on Monte Carlo approach, is applied to propagate these uncertainties to CRNS soil moisture estimations. In addition, a sensitivity analysis based on the Sobol' method is performed to identify the most important factors explaining this uncertainty. Results show that CRNS soil moisture compares well to the soil moisture network when these point-scale values are weighted to account for the spatial sensitivity of the signal and other sources of hydrogen (lattice water and organic carbon) are added to the water content. However, the performance decreases when CRNS is considered as a stand-alone method to retrieve the actual (non-weighted) volumetric soil moisture. The support volume (penetration depth and radius) shows also a considerable uncertainty, especially in relatively dry soil moisture conditions. Four of the seven factors analyzed (the vertical soil moisture profile, bulk density, incoming neutron correction and the calibrated parameter N o ) were found to play an important role. Among the possible improvements identified, a simple correction factor based on vertical point-
机译:宇宙射线中子传感(CRNS)是一种有前途的近端土壤传感技术,可估于中间规模和高颞率的土壤水分。然而,该信号显示了对土地表面附近的所有氢气池的复杂和非独特反应,为实际应用中的土壤水分估算提供了一些挑战。该研究的目的是1)评估CRNS作为一种独立方法来估计裁剪领域的容量土壤水分的不确定性,以确定这种不确定性3)的原因和可能的改进。德国的两个实验遗址配备了CRNS探针和点缩放土壤湿度网络。在作物生长季节进行了额外的监测活动,以表征土壤植物系统。该数据用于识别和量化不同的不确定性源(因子)。基于Monte Carlo方法的不确定性分析应用于将这些不确定性传播到CRNS土壤水分估计。此外,执行基于Sobol'方法的灵敏度分析,以确定解释这种不确定性的最重要因素。结果表明,当这些点尺度值加权时,曲面土壤水分对土壤湿度网络进行比较良好,以考虑信号的空间敏感性,并将其它氢气(晶格水和有机碳)加入到水含量中。然而,当CRN被认为是检索实际(未加权)体积土壤水分的独立方法时,性能降低。支撑体积(渗透深度和半径)显示出相当大的不确定性,特别是在相对干燥的土壤水分条件下。发现七种因素中的四种(垂直土壤湿度曲线,散装密度,进入中子校正和校准的参数N O)进行了重要作用。在可能的改进中,识别出基于垂直点的简单校正因子 -

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号