首页> 外文期刊>Journal of Hydrology >A Bayesian-based integrated approach for identifying groundwater contamination sources
【24h】

A Bayesian-based integrated approach for identifying groundwater contamination sources

机译:基于贝叶斯的综合方法来识别地下水污染源

获取原文
获取原文并翻译 | 示例
       

摘要

The identification of groundwater contamination sources (GCS) can provide comprehensive knowledge for the remediation and risk assessment of contaminated sites. This study develops an innovative framework that can be effectively and efficiently used for the optimal sampling well location design and GCS parameters identification. The framework is based on Bayesian theory and integrates the relative entropy (RE), a 0-1 integer programming optimization model (0-1 IPOM), Markov Chain Monte Carlo (MCMC), and a Kriging surrogate model (KSM). The expected RE is used to quantify information about unknown parameters from concentration measurements based on a Bayesian design. The optimal sampling well locations are determined through the comprehensive application of 0-1 IPOM and the expected RE. After determining the optimal sampling well locations, a Bayesian approach based on MCMC is employed to identify the GCS parameters. However, such problems are time-consuming because both determination and identification require the contaminant transport model to be run multiple times. To address this challenge, a KSM is constructed for the contaminant transport model, which greatly accelerates the determination and identification processes. The feasibility and accuracy of the proposed approach are verified by two hypothetical numerical case studies. The results show that the developed Bayesian-based integrated approach can be accurately and effectively applied for optimal sampling well location design and GCS parameter identification. Overall, this study highlights that the Bayesian-based integrated approach represents a promising solution for GCS parameter identification.
机译:地下水污染源(GCS)的识别可以为污染地点的修复和风险评估提供全面的知识。本研究开发了一种创新的框架,可以有效和有效地用于最佳采样井位置设计和GCS参数识别。该框架基于贝叶斯理论,并集成了相对熵(RE),0-1整数编程优化模型(0-1 IPOM),马尔可夫链蒙特卡罗(MCMC)和Kriging代理模型(KSM)。预期的RE用于量化基于贝叶斯设计的浓度测量有关未知参数的信息。通过0-1 IMOM的综合应用和预期的RE来确定最佳采样阱位置。在确定最佳采样阱位置之后,采用基于MCMC的贝叶斯方法来识别GCS参数。然而,这种问题是耗时的,因为确定和识别都需要多次运行污染物传输模型。为了解决这一挑战,为污染物传输模型构建了一个KSM,这极大地加速了确定和识别过程。通过两个假设的数字案例研究验证了所提出的方法的可行性和准确性。结果表明,可准确且有效地应用于发达的贝叶斯的综合方法,以实现最佳采样井位置设计和GCS参数识别。总体而言,这项研究突出显示贝叶斯的综合方法代表了GCS参数识别的有希望的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号