...
首页> 外文期刊>Journal of Hydrology >Coupled hydrogeophysical inversion to identify non-Gaussian hydraulic conductivity field by jointly assimilating geochemical and time-lapse geophysical data
【24h】

Coupled hydrogeophysical inversion to identify non-Gaussian hydraulic conductivity field by jointly assimilating geochemical and time-lapse geophysical data

机译:通过共同同化地球化学和延时地球物理数据来耦合水力学求性以识别非高斯液压导电场

获取原文
获取原文并翻译 | 示例
           

摘要

Reliable inversion of spatial heterogeneity of hydraulic conductivity is crucial to understand subsurface fluids migration. The Ensemble Smoother - Direct Sampling method (ES-DS) has proven to be an effective method to identify non-Gaussian hydraulic conductivity distributions by incorporating a variety of traditional hydrodynamic measurements, e.g., piezometric head. However, inversion problems for non-Gaussian parameters often suffer from a sparsity of the available data from direct sampling in boreholes. As a non-intrusive, cost-effective, and high sampling density method, time-lapse geophysical technique has not yet drawn much attention as a useful source of information for delineating the underlying non-Gaussian heterogeneity. In this study, we integrated coupled hydrogeophysical modeling and the ES-DS algorithm to estimate non-Gaussian hydraulic conductivity field by assimilating both geochemical and time-lapse geophysical datasets. Four synthetic Cases for a salt injection experiment, monitored by both sampling analysis and electrical resistivity tomography, are conducted to assess the ability of the proposed approach to characterize hydraulic properties by assimilating different types of data. Results show that using geochemical or geophysical data alone only allow a rough reconstruction of subsurface heterogeneity of aquifers but might lose the fine structure. By incorporating multi-source datasets, the main patterns of the non-Gaussian reference fields can be reflected with an improved resolution. The time-lapse geophysical methods open up new opportunities to accurately characterize non-Gaussian aquifers and monitor the dynamic processes of subsurface fluids.
机译:液压导电性的空间异质性的可靠反转对于了解地下液体迁移至关重要。通过掺入各种传统的流体动力学测量,例如压电头,可以证明是识别非高斯液压导电性分布的有效方法的有效方法。然而,非高斯参数的反演问题经常遭受可用数据的稀疏性,从钻孔中直接采样。作为非侵入式,经济效益和高的采样密度法,延时地球物理技术尚未引起大量关注,作为划定潜在的非高斯异质性的有用信息来源。在该研究中,我们通过同化地球化学和延时地球物理数据集来集成耦合水力学模型和ES-DS算法来估计非高斯液压导电场。通过采样分析和电阻率断层扫描监测的四种盐注射实验的合成案例,以评估所提出的方法通过同化不同类型的数据来表征液压性能的能力。结果表明,单独使用地球化学或地球物理数据仅允许对含水层的地下异质性进行粗略重建,但可能会失去细结构。通过结合多源数据集,可以以改进的分辨率反映非高斯参考字段的主要模式。时间流逝地球物理方法开辟了新的机会,以准确地表征非高斯含水层,并监测地下流体的动态过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号