...
首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >Electrification in Mesoscale Updrafts of Deep Stratiform and Anvil Clouds in Florida
【24h】

Electrification in Mesoscale Updrafts of Deep Stratiform and Anvil Clouds in Florida

机译:佛罗里达州深层和砧云的Mesoscale上升机的电气化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Airborne observations in deep stratiform and anvil clouds showed extensive layers of 10- to 40- kV/m electric fields colocated with highly stratified uniform radar reflectivity of 20 to 25 dBZ from 5- to 9-km altitude. Size distributions with numerous small- and intermediate-sized ice crystals (mostly aggregates) and large aggregates were observed in these regions. We infer that the uniform electric field, radar reflectivity, and broad particle size distributions were the result of mesoscale updrafts, confirmed by high-resolution images of particles showing diffusional growth and no riming. No measurable supercooled liquid water was found in these regions from -10 to -45 °C. Calculated particle collision rates from observed distributions were >5 × 10~3 collisions per cubic meter per second in this volume. Laboratory results show that weak charge separation occurs when ice particles collide and separate even in the absence of supercooled water. We infer that charge separation occurred in the mesoscale updrafts via a noninductive mechanism in which ice particles growing by diffusion collide and transfer charge without supercooled water being present. These regions with strong, uniform fields, stratified radar reflectivity, and broad size distributions also occurred in anvils that barely reached the melting zone. Thus, we deduce that the nonriming collisional mechanism acts at middle to upper cloud levels and is not dependent upon electrification occurring near the melting zone. This mechanism should produce two oppositely charged layers of charge with the top layer residing on smaller particles often existing near the top of the cloud.
机译:深层层状和砧云的空气中观测显示了10至40 kV / m电场的广泛层,其与高度分层的均匀雷达反射率分解为20至25dBz的5至9米的高度。在这些区域中观察到具有许多小型和中间大小的冰晶(大部分聚集体)和大聚集体的尺寸分布。推出均匀的电场,雷达反射率和宽粒度分布是Mesoscale Upprafts的结果,通过高分辨率图像的颗粒的高分辨率图像证实,显示扩散生长,没有灵敏度。在这些区域中没有可测量的过冷液体水从-10至-45℃下发现。从观察到的分布计算的颗粒碰撞速率>每立方米/秒的每立方米/秒碰撞中的5×10〜3碰撞。实验室结果表明,即使在没有过冷水的情况下,冰颗粒碰撞并分开时会发生弱电荷分离。我们推断通过非incuctive机制在Mesoscale上升机中发生电荷分离,其中冰颗粒通过扩散碰撞和转移电荷而没有出现过冷水。这些区域具有强大,均匀的磁场,分层雷达反射率和宽尺寸分布,在砧座上几乎没有到达熔化区。因此,我们推导出非兴奋机制在中部到上云水平作用,并且不依赖于熔化区附近发生的电气。该机制应产生两个相对电荷的电荷层,顶层居住在较小的颗粒上通常存在于云顶部附近。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号