...
首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >The Spectral Dimension of Arctic Outgoing Longwave Radiation and Greenhouse Efficiency Trends From 2003 to 2016
【24h】

The Spectral Dimension of Arctic Outgoing Longwave Radiation and Greenhouse Efficiency Trends From 2003 to 2016

机译:北极输出龙波辐射和温室效率趋势的频谱维度从2003年到2016年

获取原文
获取原文并翻译 | 示例

摘要

Fourteen years of spectral fluxes derived from collocated Atmospheric Infrared Sounder (AIRS) and Clouds and the Earth's Radiant Energy System (CERES) observations are used in conjunction with AIRS retrievals to examine the trends of zonal mean spectral outgoing longwave radiation (OLR) and greenhouse efficiency (GHE) in the Arctic. AIRS retrieved profiles are fed into a radiative transfer model to generate synthetic clear-sky spectral OLR. Trends are derived from the simulated clear-sky spectral OLR and GHE and then compared with their counterparts derived from collocated observations. Spectral trends in different seasons are distinctively different. March and September exhibit positive trends in spectral OLR over the far-IR dirty window and mid-IR window region for most of the Arctic. In contrast, spectral OLR trends in July are negative over the far-IR dirty window and can be positive or negative in the mid-IR window depending on the latitude. Sensitivity studies reveal that surface temperature contributes much more than atmospheric temperature and humidity to the spectral OLR and GHE trends, while the contributions from the latter two are also discernible over many spectral regions (e.g., trends in the far-IR dirty window in March). The largest increase of spectral GHE is seen north of 80°N in March across the water vapor v_2 band and far-IR. When the secular fractional change of spectral OLR is less than that of surface spectral emission, an increase of spectral GHE can be expected. Spectral trend analyses reveal more information than broadband trend analyses alone.
机译:源自源性大气红外发声器(空气)和云和地球辐射能量系统(CERES)观察的十四年的光谱通量与空气检索一起使用,以检查群体平均光谱输出长波辐射(OLR)和温室效率的趋势(GHE)在北极。 Airs检索的轮廓被馈送到辐射转移模型中以产生合成清晰天空光谱OLR。趋势来自模拟的透明天空光谱OLR和GHE,然后与其与分配观察结果的对应物进行比较。不同季节的光谱趋势鲜明不同。 3月和9月在大多数北极地区,在远红外窗口和中红外窗口区域上展示了光谱OLR的积极趋势。相比之下,7月份的光谱OLR趋势在远红外窗口上是负的,并且在中外窗口中可以是正面或负面的,这取决于纬度。敏感性研究表明,表面温度为光谱OLR和GHE趋势贡献大气温度和湿度远远超过大气温度和湿度,而后者两者的贡献也是在许多光谱区域(例如,3月份FAR-IR脏窗口的趋势)中也可以辨别出来的贡献。 3月份在水蒸气V_2频段和FAR-IR中,在80°N北部看到光谱GHE的最大增加。当光谱OLR的异常变化小于表面光谱发射时,可以预期频谱GHE的增加。光谱趋势分析揭示了比宽带趋势分析的更多信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号