首页> 外文期刊>Journal of Fluid Mechanics >The K-type and H-type transitions of natural convection boundary layers
【24h】

The K-type and H-type transitions of natural convection boundary layers

机译:自然对流边界层的K型和H型转变

获取原文
获取原文并翻译 | 示例
       

摘要

The K-type and H-type transitions of a natural convection boundary layer of a fluid of Prandtl number 7 adjacent to an isothermally heated vertical surface are investigated by means of three-dimensional direct numerical simulation (DNS). These two types of transitions refer to different flow features at the transitional stage from laminar to turbulence caused by two different types of perturbations. To excite the K-type transition, superimposed Tollmien-Schlichting (TS) and oblique waves of the same frequency are introduced into the boundary layer. It is found that a three-layer longitudinal vortex structure is present in the boundary layer undergoing the K-type transition. The typical aligned Lambda-shaped vortices characterizing the K-type transition are observed for the first time in pure natural convection boundary layers. For exciting the H-type transition, superimposed TS and oblique waves of different frequencies, with the frequency of the oblique waves being half of the frequency of the TS waves, are introduced into the boundary layer. Unlike the three-layer longitudinal vortex structure observed in the K-type transition, a double-layer longitudinal vortex structure is observed in the boundary layer undergoing the H-type transition. The successively staggered Lambda-shaped vortices characterizing the H-type transition are also observed in the downstream boundary layer. The staggered pattern of Lambda-shaped vortices is considered to be caused by temporal modulation of the TS and oblique waves. Interestingly the flow structures of both the K-type and H-type transitions observed in the natural convection boundary layer are qualitatively similar to those observed in Blasius boundary layers. However, an analysis of turbulence energy production suggests that the turbulence energy production by buoyancy rather than Reynolds stresses dominates the K-type and H-type transitions. In contrast, the turbulence energy production by Reynolds stresses is the only factor contributing to the transition in Blasius boundary layers.
机译:通过三维直接数值模拟(DNS)研究了与等温垂直的垂直表面相邻的Prandtl号7的流体的k型和H型转变。这两种类型的过渡是指从层状阶段的不同流动特征,从层流到由两种不同类型的扰动引起的湍流。为了激发K型过渡,将叠加的Tollmien-Schlichting(TS)和相同频率的倾斜波引入边界层。发现,在经历K型转变的边界层中存在三层纵向涡旋结构。在纯自然对流边界层中首次观察表征K型转变的典型对准的λ形涡流。为了激励H型转变,叠加TS和不同频率的倾斜波,倾斜波的频率是TS波的频率的一半被引入到边界层中。与在K型转变中观察到的三层纵向涡旋结构不同,在经历H型转变的边界层中观察到双层纵向涡流结构。在下游边界层中也观察到表征H型转变的连续交错的λ形涡流。 λ形涡旋的交错模式被认为是由TS和斜波的时间调制引起的。有趣地,在自然对流边界层中观察到的K型和H型转变的流动结构与在Blasius边界层中观察到的那些类似地类似的流动结构。然而,对湍流能量产生的分析表明,通过浮力而不是雷诺胁迫的湍流能量占据k型和H型转变。相比之下,雷诺兹应力产生的湍流能量是有助于在Blasius边界层中过渡的唯一因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号