首页> 外文期刊>Journal of Fluid Mechanics >Direct numerical simulation of a turbulent core-annular flow with water-lubricated high viscosity oil in a vertical pipe
【24h】

Direct numerical simulation of a turbulent core-annular flow with water-lubricated high viscosity oil in a vertical pipe

机译:垂直管中水润滑高粘度油的湍流芯环流的直接数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The characteristics of a turbulent core-annular flow with water-lubricated high viscosity oil in a vertical pipe are investigated using direct numerical simulation, in conjunction with a level-set method to track the phase interface between oil and water. At a given mean wall friction ( $Re_{unicode[STIX]{x1D70F}}=u_{unicode[STIX]{x1D70F}}R/unicode[STIX]{x1D708}_{w}=720$ , where $u_{unicode[STIX]{x1D70F}}$ is the friction velocity, $R$ is the pipe radius and $unicode[STIX]{x1D708}_{w}$ is the kinematic viscosity of water), the total volume flow rate of a core-annular flow is similar to that of a turbulent single-phase pipe flow of water, indicating that water lubrication is an effective tool to transport high viscosity oil in a pipe. The high viscosity oil flow in the core region is almost a plug flow due to its high viscosity, and the water flow in the annular region is turbulent except for the case of large oil volume fraction (e.g. 0.91 in the present study). With decreasing oil volume fraction, the mean velocity profile in the annulus becomes more like that of turbulent pipe flow, but the streamwise evolution of vortical structures is obstructed by the phase interface wave. In a reference frame moving with the core velocity, water is observed to be trapped inside the wave valley in the annulus, and only a small amount of water runs through the wave crest. The phase interface of the core-annular flow consists of different streamwise and azimuthal wavenumber components for different oil holdups. The azimuthal wavenumber spectra of the phase interface amplitude have largest power at the smallest wavenumber whose corresponding wavelength is the pipe circumference, while the streamwise wavenumber having the largest power decreases with decreasing oil volume fraction. The overall convection velocity of the phase interface is slightly l
机译:使用直接数值模拟研究了垂直管中的水润滑高粘度油的湍流芯环流量的特性,与水平设定的方法一起进行追踪油和水之间的相界面。在给定的平均壁摩擦($ Re _ { Unicode [stix] {x1d70f}} = u _ { unicode [stix] {x1d70f}} {x1d70f} r / unicode [stix] {x1d708} _ {w} = 720 $ $ u _ { unicode [stix] {x1d70f}} $是摩擦速度,$ r $是管道半径和$ unicode [stix] {x1d708} _ {w} $是水的运动粘度,总计核心环形流量的体积流量类似于水的湍流单相管流量,表明水润滑是一种在管道中运输高粘度油的有效工具。由于其高粘度,芯区域中的高粘度油流是几乎是由于其高粘度而导致的塞流,并且在大型油体积分数的情况下,环形区域中的水流是湍流(例如,本研究中的0.91)。随着油量分数的降低,环空的平均速度曲线变得更像湍流管道流动,但是涡流结构的流动演变被相位接口波阻挡。在具有核心速度的参考框架中,观察到水被捕获在环中的波谷内,并且仅少量的水通过波峰。芯环流的相位接口由不同的流动和方位角波数组件组成,用于不同的储油。相位接口幅度的方位角波数谱具有在最小波数处具有最大功率,其对应波长是管圆的,而具有最大功率的流动波数随着油量分数的降低而降低。相位接口的整体对流速度略微升高

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号