...
首页> 外文期刊>Journal of Fluid Mechanics >Topology-based characterization of compressibility effects in mixing layers
【24h】

Topology-based characterization of compressibility effects in mixing layers

机译:基于拓扑结构的混合层的可压缩效应特征

获取原文
获取原文并翻译 | 示例
           

摘要

Direct numerical simulations of high-speed mixing layers are used to characterize the effects of compressibility on the basis of local streamline topology and vortical structure. Temporal simulations of the mixing layers are performed using a finite volume gas-kinetic scheme for convective Mach numbers ranging from M-c = 0 : 2 to M-c = 1.2. The focus of the study is on the transient development and the main objectives are to (i) investigate and characterize the turbulence suppression mechanism conditioned upon local streamline topology; and (ii) examine changes in the vortex vector field - distribution, magnitude and orientation - as a function of Mach number. We first reaffirm that kinetic energy suppression with increasing Mach number is due to a decrease in pressure-strain redistribution. Then, we examine the suppression mechanism conditioned upon topology and vortex structure. Conditional statistics indicate that (i) at a given Mach number, shear-dominated topologies generally exhibit more effective pressure-strain redistribution than vortical topologies; and (ii) for a given topology, the level of pressure-strain correlation mostly decreases with increasing Mach number. At each topology, with increasing Mach number, there is a corresponding decrease in turbulent shear stress and production leading to reduced kinetic energy. Further, as Mc increases, the proportion of vortex-dominated regions in the flow increases, leading to further reduction in the turbulent kinetic energy of the flow. Then, the orientation of vortical structures and direction of fluid rotation are examined using the vortex vector approach of Tian et al. (J. Fluid Mech., vol. 849, 2018, pp. 312-339). At higher M-c, the vortex vectors tend to be more aligned in the streamwise direction in contrast to low M-c wherein larger angles with streamwise direction are preferred. The connection between vortex orientation and kinetic energy production is also investigated. The findings lead to improved in
机译:高速混合层的直接数值模拟用于在局部流线拓扑和涡流基础上表征压缩性的影响。使用有限体积气体动力学方案进行混合层的时间模拟,用于与M-C = 0:2至M-C = 1.2的测距线数范围。该研究的重点是瞬态发展,主要目标是(i)调查和表征局部流线拓扑上的湍流抑制机制; (ii)检查涡旋矢量场 - 分布,幅度和方向的变化 - 作为马赫数的函数。我们首先重申随着Mach数量的增加,动能抑制是由于压力 - 应变再分配的降低。然后,我们检查在拓扑和涡旋结构上调节的抑制机制。条件统计表明(i)在给定的马赫数,剪切主导的拓扑通常表现出比志性拓扑的更有效的压力 - 应变重新分布; (ii)对于给定拓扑,压力 - 应变相关程度随着Mach数量的增加而减少。在每个拓扑中,随着Mach数量的增加,湍流剪切应力和生产的相应降低导致动能降低。此外,随着MC的增加,流动中的涡流主导区域的比例增加,导致流动的湍流动能进一步降低。然后,使用Tian等人的涡流矢量方法检查涡流结构和流体旋转方向的方向。 (J. Fluid Mech。,Vol.849,2018,PP。312-339)。在较高的M-C时,与低M-C相反,涡流矢量倾向于在流动方向上更加对准,其中优选具有流动方向的较大角度。还研究了涡旋方向与动能生产之间的联系。调查结果导致改善

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号