首页> 外文期刊>Journal of Fluid Mechanics >Sorting same-size red blood cells in deep deterministic lateral displacement devices
【24h】

Sorting same-size red blood cells in deep deterministic lateral displacement devices

机译:在深度确定性横向位移装置中排序相同尺寸的红细胞

获取原文
获取原文并翻译 | 示例
           

摘要

Microfluidic sorting of deformable particles finds many applications, for example, medical devices for cells.Deterministic lateral displacement (DLD) is one of them.Particle sorting via DLD relies only on hydrodynamic forces.For rigid spherical particles, this separation is to a great extent understood and can be attributed to size differences: large particles displace in the lateral direction with respect to the flow while small particles travel in the flow direction with negligible lateral displacement.However, the separation of non-spherical deformable particles such as red blood cells (RBCs) is more complicated than that of rigid particles.For example, is it possible to separate deformable particles that have the same size but different mechanical properties? We study deformability-based sorting of same-size RBCs via DLD using an in-house integral equation solver for vesicle flows in two dimensions.Our goal is to quantitatively characterize the physical mechanisms that enable the cell separation.To this end, we systematically investigate the effects of the interior fluid viscosity and membrane elasticity of a cell on its behaviour.In particular, we consider deep devices in which a cell can show rich dynamics such as taking a particular angular orientation depending on its mechanical properties.We have found out that cells moving with a sufficiently high positive inclination angle with respect to the flow direction displace laterally while those with smaller angles travel with the flow streamlines.Thereby, deformability-based cell sorting is possible.The underlying mechanism here is cell migration due to the cell's positive inclination and the shear gradient.The higher the inclination is, the farther the cell can travel laterally.We also assess the efficiency of the technique for dense suspensions.It turns out that most of the cells in dense suspensions do not displace in the lateral direction no matter what their deformability is.As a result, separating cells us
机译:可变形颗粒的微流体分选发现许多应用,例如,用于细胞的医疗装置。术语横向位移(DLD)是其中之一。通过DLD分选仅依赖于流体动力力。对于刚性球形颗粒,这种分离是在很大程度上理解并且可以归因于尺寸差异:大颗粒相对于流动沿横向移位,而小颗粒在流动方向上行进,具有可忽略的横向位移。然而,非球形可变形颗粒如红细胞的分离( RBCS)比刚性颗粒更复杂。例如,可以将具有相同尺寸但不同机械性能的可变形颗粒分离出来?通过DLD研究基于可变形的基于RBC的分类,使用内部整体方程求解器以两个维度流出。我们的目标是定量表征使细胞分离的物理机制。至于这,我们系统地调查细胞内部流体粘度和膜弹性对其行为的影响。特别是,考虑到细胞可以显示细胞可以显示诸如采取特定角度取向的细胞的深度装置。我们发现了电池通过相对于流动方向移动具有足够高的正倾斜角,而具有较小角度行进的那些与流动流线的那些。这些基于可变形的电池分类。这里的底层机构是由于细胞的正面引起的细胞迁移倾斜和剪切梯度。倾角越高,电池横向行进的越高。我们也是屁股ESS致密悬浮液技术的效率。据证明,无论它们的可变形性是什么,致密悬浮液中的大多数细胞都不会在横向上移位。结果,分离细胞

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号