首页> 外文期刊>Journal of Electronic Materials >Detailed Transient Multiphysics Model for Fast and Accurate Design, Simulation and Optimization of a Thermoelectric Generator (TEG) or Thermal Energy Harvesting Device
【24h】

Detailed Transient Multiphysics Model for Fast and Accurate Design, Simulation and Optimization of a Thermoelectric Generator (TEG) or Thermal Energy Harvesting Device

机译:用于快速准确设计,仿真和优化热电发电机(TEG)或热能收集装置的详细瞬态多体模型

获取原文
获取原文并翻译 | 示例
           

摘要

Described herein is a detailed and comprehensive multiphysics model of a thermoelectric generator (TEG). The one-dimensional model uses electrical-thermal analogies solved for transient response using SPICE. There are many advantages and applications of thermoelectric generators. Wider use and application advancements are generally limited by the tools available for engineering and scientific studies. Currently, available modeling tools are limited by some combination of speed, platform capabilities, or missing physics that are not used or assumed to be negligible. The TEG module model herein is made up of two sub-models, the thermoelement model and the non-thermoelement model. Rather than a lumped thermoelement model, the model herein makes use of distributed physics that include the following: Thomson effect, temperature dependence, mass, Joule heat, thermal resistance, Seebeck effect, and electrical resistance. The non-thermoelement model takes into account temperature dependence and simulates Joule heat generation, thermal resistances, thermal and electrical interface resistances, and mass for and between the ceramic, copper, and solder. The comprehensive model herein was correlated to experimental data that simultaneously varied electrical current and hot and cold side temperatures with time. Very minimal adjustments to reported thermoelectric properties were required to almost perfectly match the experimental transient power output. The effects of the non-thermoelement model, distributed Thomson effect model and distributed temperature dependent property model were quantified. The model ran very quickly, taking 2.5 real-time seconds to run a 4000s transient simulation.
机译:这里描述的是热电发电机(TEG)的详细和综合的多体模型。一维模型使用用于使用香料解决瞬态响应的电热量。热电发电机有许多优点和应用。更广泛的使用和应用进步通常受工程和科学研究的工具限制。目前,可用的建模工具受到不使用或假设无法忽略或假定的速度,平台功能或遗失物理组合的限制。这里的TEG模块模型由两个子模型,热胶模型和非热焦型模型组成。而不是集总热心模型,本文的模型利用了包括以下内容的分布式物理学:汤姆森效应,温度依赖性,质量,焦耳热,耐热性,塞贝克效应和电阻。非热度模型考虑了温度依赖性,并模拟焦耳发热,热阻,热电接口电阻,以及陶瓷,铜和焊料之间的质量。本文的综合模型与实验数据相关,实验数据随着时间的推移同时变化电流和冷热侧温度。对报告的热电性能进行了非常少的调整,以几乎完全匹配实验瞬态功率输出。量化模型的影响,分布式汤姆森效应模型和分布式温度依赖性模型进行了量化。该模型非常快速地运行,需要2.5实时秒,运行4000s瞬态仿真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号