首页> 外文期刊>Journal of chromatography, A: Including electrophoresis and other separation methods >Polar silica-based stationary phases. Part II- Neutral silica stationary phases with surface bound maltose and sorbitol for hydrophilic interaction liquid chromatography
【24h】

Polar silica-based stationary phases. Part II- Neutral silica stationary phases with surface bound maltose and sorbitol for hydrophilic interaction liquid chromatography

机译:基于极性二氧化硅的固定阶段。 第II-中性二氧化硅固定相,具有表面结合的麦芽糖和山梨糖醇,用于亲水性相互作用液相色谱法

获取原文
获取原文并翻译 | 示例
       

摘要

Two neutral polyhydroxylated silica bonded stationary phases, namely maltose-silica (MALT-silica) and sorbitol-silica (SOR-silica), have been introduced and chromatographically characterized in hydrophilic interaction liquid chromatography (HILIC) for a wide range of polar compounds. The bonding of the maltose and sorbitol to the silica surface was brought about by first converting bare silica to an epoxy-activated silica surface via reaction with gamma-glycidoxypropyltrimethoxysilane (GPTMS) followed by attaching maltose and sorbitol to the epoxy surface in the presence of the Lewis acid catalyst BF3 ethereate. Both silica based columns offered the expected retention characteristics usually encountered for neutral polar surface. The retention mechanism is majorly based on solute' differential partitioning between an organic rich hydro-organic mobile phase (e.g., ACN rich mobile phase) and an adsorbed water layer on the surface of the stationary phase although additional hydrogen bonding was also responsible in some cases for solute retention. The MALT-silica column proved to be more hydrophilic and offered higher retention, separation efficiency and resolution than the SOR-silica column among the tested polar solutes such as derivatized mono- and oligosaccharides, weak phenolic acids, cyclic nucleotide monophosphate and nucleotide-5'-monophosphates, and weak bases, e.g., nucleobases and nucleosides. (C) 2017 Elsevier B.V. All rights reserved.
机译:已经引入了两种中性多羟基化二氧化硅,即麦芽糖 - 二氧化硅(Malt-二氧化硅)和山梨糖醇 - 二氧化硅(Sor-二氧化硅),并在亲水性相互作用液相色谱(HILIC)中进行色谱,用于各种极性化合物。通过与γ-缩水氧基丙基三甲氧基硅烷(GPTMS)反应,通过将裸二氧化硅转化为环氧活化的二氧化硅表面,通过与γ-缩水甘油氧基丙基三甲氧基硅烷(GPTMS)反应,将麦芽糖和山梨糖醇与二氧化硅表面的粘合引起。随后将麦芽糖和山梨糖醇附着在环氧树脂表面上路易斯酸催化剂BF3醚。基于二氧化硅的柱,通常遇到中性极性表面通常遇到的预期保持特性。保留机制主要是基于溶质在固定阶段表面上的有机富水 - 有机流动相(例如,ACN富含流动阶段)​​和吸附水层之间的溶质差分配,尽管在某些情况下也是额外的氢键也负责用于溶质保留。麦芽二氧化硅柱被证明是更亲水的,并且提供比Sor-Silica柱更亲水,并且提供比Sor-Silica柱等测试的极性溶质,例如衍生的单糖和寡糖,弱酚酸,环核苷酸单磷酸和核苷酸-5' - 醇磷酸盐,弱碱,例如核碱基和核苷。 (c)2017年Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号