首页> 外文期刊>Journal of Computational and Applied Mathematics >Matrix recursive polynomial interpolation algorithm: An algorithm for computing the interpolation polynomials
【24h】

Matrix recursive polynomial interpolation algorithm: An algorithm for computing the interpolation polynomials

机译:矩阵递归多项式插值算法:计算插值多项式的算法

获取原文
获取原文并翻译 | 示例
       

摘要

Let x(0), x(1),... , x(n), be a set of n+1 distinct real numbers (i.e., x(i) not equal x(j), for i not equal j) and y(m,k), for m = 0, 1,..., n, and k = 0, 1,..., n(m), with n(m) is an element of N, be given of real numbers, we know that there exists a unique polynomial p(N-1) of degree N - 1 where N = Sigma(n)(i=0) n(i) + 1), such that p(N-1)((k)) (chi(m)) = y(m,k), for m = 0, 1,..., n and k = 0, 1,.., n(m). p(N-1) is the Hermite interpolation polynomial for the set {(x(m), Y-m,Y-k), m = 0, 1,..., n, k = 0, 1,..., n(m)}. The polynomial p(N-1) can be computed by using the Lagrange generalized polynomials. Recently Messaoudi et al. (2018) presented a new algorithm for computing the Hermite interpolation polynomials, for a general case, called Generalized Recursive Polynomial Interpolation Algorithm (GRPIA), this algorithm has been developed without using the Matrix Recursive Interpolation Algorithm (bilou and Messaoudi, 1999). Messaoudi et al. (2017) presented also a new algorithm called Matrix Recursive Polynomial Interpolation Algorithm (MRPIA), for a particular case where n(m) = mu = 1, for m = 0, 1,, n. In this paper we will give the version of the MRPIA for a particular case n(m) = mu >= 0, for m = 0, 1,,,,, n. We will recall the result of the existence of the polynomial p(N-1) for this case, some of its properties will also be given. Using the MRPIA, a method will be proposed for the general case, where n(m), for some m, are different and some examples will also be given. (C) 2019 Elsevier B.V. All rights reserved.
机译:设x(0),x(1),...,x(n),是一组n + 1个不同的实数(即,x(i)不等于x(j),因为我不等于j)和y(m,k),对于m = 0,1,...,n,和k = 0,1,...,n(m),n(m)是n的元素实数,我们知道,存在唯一的n - 1的多项式p(n-1),其中n = sigma(n)(n)(i = 0)n(i)+ 1),使得p(n-1 )((k))(chi(m))= y(m,k),对于m = 0,1,...,n和k = 0,1,..,n(m)。 p(n-1)是集合的Hermite插值多项式{(x(m),ym,yk),m = 0,1,...,n,k = 0,1,...,n( m)}。通过使用拉格朗日广义多项式可以计算多项式P(n-1)。最近Messaoudi等。 (2018)介绍了一种用于计算Hermite插值多项式的新算法,对于一般情况,称为广义递归多项式插值算法(GRPIA),在不使用矩阵递归插值算法(Bilou和Messaoudi,1999)的情况下开发了该算法。 Messaoudi等。 (2017)还提出了一种称为矩阵递归多项式插值算法(MRPIA)的新算法,对于N(m)= mu = 1,对于m = 0,1,,n。在本文中,我们将为M = 0,1 ,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,= 0,我们将给出MRPIA的版本。我们将回顾这种情况的多项式P(n-1)的结果,还将给出一些属性。使用MRPIA,将为一般情况提出一种方法,其中一些M的N(m)是不同的,并且还将给出一些例子。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号