首页> 外文期刊>Journal of Colloid and Interface Science >In situ growth of self-supported and defect-engineered carbon nanotube networks on 316L stainless steel as binder-free supercapacitors
【24h】

In situ growth of self-supported and defect-engineered carbon nanotube networks on 316L stainless steel as binder-free supercapacitors

机译:在316L不锈钢上的自支撑和缺陷工程碳纳米管网络的原位成长为无粘合剂超级电容器

获取原文
获取原文并翻译 | 示例
       

摘要

Self-supported and defect-engineered carbon nanotube networks directly grown on 316L stainless steel are used for binder-free supercapacitors. In situ growth of the carbon nanotube networks on 316L stainless steel is obtained through the chemical vaporization deposition and thermal treatment to generate various defects. The relationship between the microstructures of carbon nanotube networks and electrochemical characteristics is investigated. The as-prepared carbon nanotube networks are characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and Raman analysis. Cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy tests are also carried out to evaluate their capacitive properties, suggesting that the electrochemical characteristics are significantly affected by annealing time, The carbon nanotube networks annealed at 500 degrees C for 2 h display high capacitance of 11 mF cm(-2) and excellent cycling lifetime with capacitance retention ration 97% at the scan rate of 0.5 mA cm(-2) for 5000 periods, which is attributed to the defect engineering increasing the defects of carbon nanotube networks, enhancing hydrophilic property and facilitating the transportation of electrolyte ions. (C) 2018 Elsevier Inc. All rights reserved.
机译:直接在316L不锈钢上生长的自支撑和缺陷工程碳纳米管网络用于无粘合剂的超级电容器。通过化学蒸发沉积和热处理获得316L不锈钢的碳纳米管网络上的碳纳米管网络的增长,以产生各种缺陷。研究了碳纳米管网络的微观结构与电化学特性之间的关系。通过扫描电子显微镜,透射电子显微镜,X射线光电子体光谱和拉曼分析的特征在于制备的碳纳米管网络。还进行了循环伏安,电镀电荷 - 放电和电化学阻抗光谱检测,以评估它们的电容性质,表明电化学特性受退火时间的显着影响,碳纳米管网络以500摄氏度退火2小时显示高电容11 MF cm(-2)和优异的循环寿命,电容保持率为97%,扫描速度为0.5 mA cm(-2),归因于缺陷工程,增加了碳纳米管网络的缺陷,增强了亲水性性质,促进电解质离子的运输。 (c)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号