首页> 外文期刊>Journal of Colloid and Interface Science >Facile hydrothermal synthesis of carbon-coated cobalt ferrite spherical nanoparticles as a potential negative electrode for flexible supercapattery
【24h】

Facile hydrothermal synthesis of carbon-coated cobalt ferrite spherical nanoparticles as a potential negative electrode for flexible supercapattery

机译:碳涂覆的钴铁氧体球形纳米粒子的容易水热合成作为柔性超胶质型负电极的潜在负极

获取原文
获取原文并翻译 | 示例
           

摘要

Battery type electrodes would replace the currently available pseudocapacitive electrodes by the cause of high energy density and long discharge time. In this regard, battery type carbon coated CoFe2O4 spherical nanoparticles is prepared by the facile hydrothermal method and tested as the possible negative electrode for supercapattery applications. The phase purity, electronic states of elements, and the presence of carbon is inferred through various sophisticated techniques. The calculated surface area of CoFe2O4 and carbon coated CoFe2O4 are found to be 9 and 26 m(2) g(-1), respectively. The morphological analysis confirms the formation of uniform CoFe2O4 nanospheres (similar to 25 nm) with a thin layer of carbon coating (similar to 2 nm). The amorphous carbon coating over CoFe2O4 nanosphere is identified via high-resolution transmission electron microscope. The observed peak and plateau regions in the cyclic voltammogram and galvanostatic charge/discharge curves reveals the battery-type charge storage behaviour of the material. The carbon coated CoFe2O4 delivers the maximum length capacitance of 9.9 F m(-1) at 1 mV s(-1) with a useful lifespan over 5000 cycles. The electrochemical impedance spectroscopy reveals that the carbon coated CoFe2O4 delivers the low charge transfer resistance than CoFe2O4. Further, the fabricated supercapattery provides the energy density of 160 x 10(-8) Wh cm(-1) at a power density of 67.2 mu W cm(-1). As well as, the device shows 93% of coulombic efficiency and 75% of the specific capacitance retention over 11,000 cycles. Overall, it is believed that the carbon-coated CoFe2O4 can serve as a good candidate for flexible supercapatteries. (C) 2017 Elsevier Inc. An rights reserved.
机译:电池型电极将由高能量密度和放电时间长的原因替换当前可用的赝电容电极。在这方面,电池类型的碳涂覆的铁酸钴球形纳米粒子是由容易水热法制备,并作为supercapattery应用的可能的负电极测试。相纯度,元件的电子状态,并且碳的存在下通过各种复杂的技术推断。铁酸钴和碳涂覆的铁酸钴的计算表面积被发现是9和26米(2)克(-1),分别。形态学分析证实均匀铁酸钴纳米球的与碳涂层(类似于至2nm)的薄层的形成(类似于至25nm)。所述无定形碳涂覆在铁酸钴纳米球是通过高分辨率透射电子显微镜确定。在循环伏安图和恒电流充电/放电曲线所观察到的峰和平台区域揭示的材料的电池型电荷存储行为。涂覆铁酸钴的碳为1毫伏秒(-1)的有用寿命超过5000个周期提供的9.9女男(-1)的最大长度的电容。电化学阻抗谱显示,涂覆铁酸钴的碳提供了比铁酸钴的低电荷转移电阻。另外,所制造的supercapattery提供的160×10的能量密度(-8)瓦厘米(-1)的67.2亩W¯¯厘米的功率密度(-1)。以及,该装置显示的库仑效率为93%和超过11,000次循环的比电容保留的75%。总体而言,人们认为碳包覆铁酸钴可以作为一个很好的候选人灵活supercapatteries。 (C)2017年爱思唯尔公司的版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号