首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Microstructure, mechanical properties, and damping capacity in stir zone after friction stir welding of Fe-17Mn damping alloy
【24h】

Microstructure, mechanical properties, and damping capacity in stir zone after friction stir welding of Fe-17Mn damping alloy

机译:Fe-17Mn阻尼合金摩擦搅拌焊接后搅拌区的微观结构,机械性能和阻尼能力

获取原文
获取原文并翻译 | 示例
           

摘要

The microstructure, stacking fault energy (SFE), tensile properties, fractured surface, and the damping capacity of the Fe-17Mn (wt.%) alloy with a dual phase structure of gamma austenite and epsilon martensite were systematically investigated at different tool rotation speeds (i.e., 120, 280, and 440 rpm) during friction stir welding (FSW). The FSWed specimens have a larger fraction of the epsilon phase than the base material (BM) despite finer grains and higher SFE because of the increased transformation kinetics on subsequent cooling after FSW caused by the introduced dislocations during FSW. With the higher speeds up to 440 rpm, the epsilon fraction increases gradually, owing to the lower gamma stability by grain coarsening and lower SFE. Both the yield and ultimate tensile strengths (YS and UTS) are enhanced in the FSWed specimens relative to the BM regardless of the rotation speed, while total elongation drops at 120 and 280 rpm and rises again at 440 rpm. Both grain coarsening and reduction in the accumulated dislocations at higher speeds result in a decrease in YS. The reason for the improved UTS of FSWed specimens is the increase in the strain hardening rate (SHR) caused by active transformation-induced plasticity from gamma phase. With increasing speeds up to 440 rpm, an excellent balance of the UTS and total elongation is obtained from the sustained SHR by the increased mechanical stability, the facilitation of the pyramidal slip and twinning in the epsilon phase, and reduction of the quasi-cleavage fracture. The damping capacity after FSW decreases owing to the pinning effect of the partial dislocation by the introduced dislocations during FSW. (C) 2019 Elsevier B.V. All rights reserved.
机译:微观结构,堆垛层错能(SFE),拉伸性能,断裂面,并且所述的Fe-17Mn(重量%)的阻尼容量合金具有双相结构的γ奥氏体和小量马氏体在不同工具的旋转速度进行了系统的研究(即,120,280,和440 rpm)的摩擦搅动焊接期间(FSW)。尽管因为在随后的冷却FSW引起FSW期间引入的位错之后的增加的变动力学的更细颗粒和更高的SFE标本FSWed具有的ε相比母材(BM)的较大部分。具有较高速度高达440转,逐渐的ε分数的增加,由于由晶粒粗化的下伽玛稳定性和更低的SFE。二者的产率和极限拉伸强度(YS和UTS)被增强在FSWed标本相对于BM不管旋转速度,而总伸长率下降,在120和280rpm下和在440转再次上升。既晶粒粗化和减少在较高速度下的累积位错导致在YS降低。其原因FSWed试样的改进的UTS是在由从γ相活性变诱发塑性应变硬化率(SHR)的增加。随着速度高达440转,从获得的UTS和总伸长率的优异平衡持续SHR由增加的机械稳定性,锥体滑移的便利和在的ε相结对,和减少的准解理断裂。 FSW后减震性降低由于由所引入的位错FSW期间的部分位错的钉扎效应。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号