首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Controllable construction of interconnected SnOx/N-doped carbon/carbon composite for enhanced-performance lithium-ion batteries anodes
【24h】

Controllable construction of interconnected SnOx/N-doped carbon/carbon composite for enhanced-performance lithium-ion batteries anodes

机译:增强性能锂离子电池阳极互连型号型号/正掺杂碳/碳复合材料的可控结构

获取原文
获取原文并翻译 | 示例
           

摘要

Tin-based materials have been considered as promising anode materials for their high theoretical capacities in rechargeable lithium ion batteries. However, the large volume variation during repeated lithiation/delithiation processes, leads to aggregation and pulverization of active materials, which limits their practical application. Herein, a facile and effective strategy was designed to construct interconnected porous SnOx/N-doped carbon framework, using Sn(IV)-containing polypyrrole as sacrificial template/precursor followed by depositing carbonaceous species via ethanol steam reforming process. Benefiting from the synergistic effects between ultrafine SnO2 and Sn nanocrystals, porous N-doped carbon and carbon matrices derived from polypyrrole and ethanol, respectively, the composite exhibits large reversible capacity of 728.6 mAh g(-1) after 140 cycles at 100 mA g(-1), and a long-term cycling performance of 435 mAh g(-1) after 500 cycles even at 1000 mA g(-1). The remarkable high electrochemical performance, together with the scalable production and low-cost starting materials, will advance the promising application of Sn-based composite to next generation rechargeable batteries. (C) 2018 Elsevier B.V. All rights reserved.
机译:基于锡材料被认为是具有可充电锂离子电池的高理论能力的承诺阳极材料。然而,重复锂化/脱锂过程中的大体积变化导致活性材料的聚集和粉碎,这限制了它们的实际应用。这里,设计了一种容易和有效的策略,用于构建相互连接的多孔苯氧基/ n掺杂的碳框架,使用Sn(IV)滤蛋白作为牺牲模板/前体,然后通过乙醇蒸汽重整方法沉积碳质物种。从超细SnO2和Sn纳米晶体之间的协同效应中受益,多孔正氢碳和衍生自聚吡咯和乙醇的碳基质,在100mA g(40mAg)的140次循环后,复合材料在140次循环后表现出大的可逆容量为728.6mAhg(-1)( -1),即使在1000 mA g(-1)下,500次循环后,长期循环性能为435mAhg(-1)。具有显着的高电化学性能,以及可扩展的生产和低成本的起始材料,将推进对下一代可充电电池的有希望的综合应用。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号