...
首页> 外文期刊>Current Genetics: Eukaryotes with Emphasis on Yeasts, Fungi, Mitochondria, Plastids >Sequences in the N-terminal cytoplasmic domain of Saccharomyces cerevisiae maltose permease are required for vacuolar degradation but not glucose-induced internalization.
【24h】

Sequences in the N-terminal cytoplasmic domain of Saccharomyces cerevisiae maltose permease are required for vacuolar degradation but not glucose-induced internalization.

机译:酿酒酵母麦芽糖通透酶的N-末端胞质结构域中的序列是液泡降解所需的,而不是葡萄糖诱导的内在化。

获取原文
获取原文并翻译 | 示例
           

摘要

In Saccharomyces cerevisiae, glucose addition to maltose fermenting cells causes a rapid loss of maltose transport activity and ubiquitin-mediated vacuolar proteolysis of maltose permease. GFP-tagged Mal61 maltose permease was used to explore the role of the N-terminal cytoplasmic domain in glucose-induced inactivation. In maltose-grown cells, Mal61/HA-GFP localizes to the cell surface and, surprisingly, to the vacuole. Studies of end3Delta and doa4Delta mutants indicate that a slow constitutive internalization of Mal61/HA-GFP is required for its vacuolar localization. Site-specific mutagenesis of multiple serine/threonine residues in a putative PEST sequence of the N-terminal cytoplasmic domain of maltose permease blocks glucose-induced Mal61p degradation but does not affect the rapid loss of maltose transport activity associated with glucose-induced internalization. The internalized multiple Ser/Thr mutant protein co-localizes with Snf7p in a putative late endosome or E-compartment. Further, alteration of a putative dileucine [D/EExxxLL/I] motif at residues 64-70 causes a significant defect in maltose transport activity and mislocalization to an E-compartment but appears to have little impact on glucose-induced internalization. We conclude that the N-terminal cytoplasmic domain of maltose permease is not the target of the signaling pathways leading to glucose-induced internalization of Mal61 permease but is required for its subsequent delivery to the vacuole for degradation.
机译:在酿酒酵母中,向麦芽糖发酵细胞中添加葡萄糖会导致麦芽糖转运活性的快速丧失和遍在蛋白介导的麦芽糖通透酶的液泡蛋白水解。 GFP标签的Mal61麦芽糖通透酶用于探索N末端胞质域在葡萄糖诱导的失活中的作用。在麦芽糖生长的细胞中,Mal61 / HA-GFP定位于细胞表面,并意外地位于液泡。对end3Delta和doa4Delta突变体的研究表明,其液泡定位需要Mal61 / HA-GFP的缓慢组成型内在化。麦芽糖通透酶N末端胞质域的假定PEST序列中多个丝氨酸/苏氨酸残基的位点特异性诱变可阻断葡萄糖诱导的Mal61p降解,但不影响与葡萄糖诱导的内在化相关的麦芽糖转运活性的快速丧失。内化的多个Ser / Thr突变蛋白与Snf7p共定位在推定的晚期内体或E隔室中。此外,在残基64-70处推定的双亮氨酸[D / EExxxLL / I]基序的改变引起麦芽糖转运活性的显着缺陷和向E区室的错误定位,但似乎对葡萄糖诱导的内在化影响很小。我们得出的结论是,麦芽糖通透酶的N末端胞质域不是导致葡萄糖诱导的Mal61通透酶内在化的信号通路的目标,而是其随后递送至液泡进行降解所必需的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号