首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >A simple, low-cost and scale-up synthesis strategy of spherical-graphite/Fe2O3 composites as high-performance anode materials for half/full lithium ion batteries
【24h】

A simple, low-cost and scale-up synthesis strategy of spherical-graphite/Fe2O3 composites as high-performance anode materials for half/full lithium ion batteries

机译:球形 - 石墨/ Fe2O3复合材料的简单,低成本和扩大的合成策略,作为半/全锂离子电池的高性能阳极材料

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Spherical-graphite/Fe2O3 composites have been synthesized through a facile and cost-effective strategy which contains initial co-precipitation reaction along with subsequent calcination process. The core-shell structure of composites is formed by coating some Fe2O3 nanorods on the surface of spherical-graphite. This work verifies the optimal coating amount of Fe2O3, which is most beneficial for improvement of lithium storage performance. Indeed, all the composites deliver excellent rate capability and cycling stability in half-cell. The optimal spherical-graphite/Fe2O3 composite with 8.7 wt% of Fe2O3 exhibits a high reversible capacity of 540 mAh g(-1) at 0.5 A g(-1) and 376 mAh g(-1) at 2 A g(-1) after 200 and 1000 cycles, respectively. The electrochemical performance of full-cell with optimal composite as anode and LiFePO4 as cathode has been investigated, which can retain 288 mAh g(-1) at 0.1 A g(-1) after 30 cycles. The outstanding lithium storage performance is lied in the synergistic effect of spherical-graphite and Fe2O3 nanorods. The outer Fe2O3 nanorods can significantly improve the lithium storage capacity, meanwhile the high-conductive spherical-graphite can suppress the volume changes of Fe2O3. The above results demonstrate that the low-cost and simple synthesis strategy to prepare spherical-graphite/Fe2O3 composites has sufficient potential to replace graphite for high performance lithium ion batteries. (C) 2020 Elsevier B.V. All rights reserved.
机译:通过容易和经济高效的策略合成球形 - 石墨/ Fe2O3复合材料,该策略含有初始共析出反应以及随后的煅烧过程。复合材料的核壳结构是通过在球面 - 石墨表面上涂覆一些Fe2O3纳米棒而形成的。这项工作验证了Fe2O3的最佳涂层量,最有利于改善锂储存性能。实际上,所有复合材料都可以在半电池中提供出色的速率和循环稳定性。具有8.7wt%Fe2O3的最佳球形 - 石墨/ Fe2O3复合材料在2Ag(-1)的0.5Ag(-1)和376mAhg(-1)下具有540mAhg(-1)的高可逆容量(-1 )分别在200和1000周期后。已经研究了具有最佳复合材料的全细胞的电化学性能作为阳极和LiFePO4作为阴极,其在30次循环后可以在0.1Ag(-1)下保持288mAhg(-1)。出色的锂储存性能呈现在球形 - 石墨和Fe2O3纳米棒的协同作用。外部Fe2O3纳米棒可以显着提高锂储存能力,同时高导电球形石墨可以抑制Fe2O3的体积变化。上述结果表明,用于制备球形 - 石墨/ Fe2O3复合材料的低成本和简单的合成策略具有更换高性能锂离子电池的石墨的可能性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号