首页> 外文期刊>Journal of Applied Polymer Science >Effect of molecular structures on static and dynamic compression properties of clay and amphiphilic clay/carbon nanofibers used as fillers in UHMWPE/composites for high-energy-impact loading
【24h】

Effect of molecular structures on static and dynamic compression properties of clay and amphiphilic clay/carbon nanofibers used as fillers in UHMWPE/composites for high-energy-impact loading

机译:分子结构对粘土和两亲粘土/碳纳米纤维的静态和动态压缩性能用作高能量冲击载荷的填料用作填料

获取原文
获取原文并翻译 | 示例
       

摘要

Three different ultrahigh-molecular-weight polyethylene (UHMWPE)-clay nanocomposites (Muscovite, Cloisite 30B and amphiphilic clay/carbon nanofibers) were investigated with the nanocomposite nanomorphology studied before and after dynamic mechanical compressive tests at high strain rates. Their material structure and thermal properties were investigated using techniques such as step-scan differential scanning calorimetry, split Hopkinson pressure bar, synchrotron small angle X-ray scattering (SAXS), and dynamic mechanical analysis. Results were associated with morphological changes observed after deformation. chemical vapor deposition (CVD)-modified nanocomposite, due to the molecular bonding and the extra functional groups, is designed with crystalline structures with fewer defects and higher stability. The increase in particulate/polymer interactions observed for the CVD-modified material decreased the elongation in the quasi-static test. However, the dynamic mechanical behavior contradicted the quasi-static behavior because at very high strain rates there was not sufficient time for the interlamellar and intralamellar defect facilitated plastic flow and the material transitioned through the glassy state. The SAXS results show that deformation strongly induced changes in the UHMWPE and UHMWPE-clay nanocomposite morphology. SAXS indicates that CVD-modified samples became more compact and dense, thus corroborating the formation of additional secondary bonds between structures and/or the carbon nanofibers alignment. (c) 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47094.
机译:采用高应变率之前和之后研究的纳米复合材料纳米形态研究了三种不同的超高分子量聚乙烯(UHMWPE)-CHRAY纳米复合材料(Moscocite,Cloisite 30B和两亲物粘土/碳纳米纤维)。研究了它们的材料结构和热性能,如步骤扫描差示扫描量热法,拆分霍普金森压棒,同步机小角度X射线散射(SAXS)和动态机械分析。结果与变形后观察到的形态变化有关。由于分子键合和额外官能团,化学气相沉积(CVD)制纳米复合材料,设计具有较少缺陷和更高稳定性的晶体结构。对于CVD改性材料观察到的颗粒/聚合物相互作用的增加降低了准静态试验中的伸长率。然而,动态力学行为与准静态行为相矛盾,因为在非常高的应变速率下,在玻璃型和脑内缺陷的术缺陷术中没有足够的时间来进行舒适的塑料流动,并且通过玻璃状态过渡的材料。萨克斯结果表明,变形强烈诱导了UHMWPE和UHMWPE-粘土纳米复合形态的变化。萨克斯表示CVD改性的样品变得更加紧凑和致密,从而证实了结构和/或碳纳米纤维对准之间的附加次级键的形成。 (c)2018 Wiley期刊,Inc.J.Phill。聚合物。 SCI。 2019,136,47094。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号