首页> 外文期刊>Developmental biology >Modelling asymmetric somitogenesis: Deciphering the mechanisms behind species differences
【24h】

Modelling asymmetric somitogenesis: Deciphering the mechanisms behind species differences

机译:建模不对称同学:破译物种差异背后的机制

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Somitogenesis is one of the major hallmarks of bilateral symmetry in vertebrates. This symmetry is lost when retinoic acid (RA) signalling is inhibited, allowing the left-right determination pathway to influence somitogenesis. In all three studied vertebrate model species, zebrafish, chicken and mouse, the frequency of somite formation becomes asymmetric, with slower gene expression oscillations driving somitogenesis on the right side. Still, intriguingly, the resulting left-right asymmetric phenotypes differ significantly between these model species. While somitogenesis is generally considered as functionally equivalent among different vertebrates, substantial differences exist in the subset of oscillating genes between different vertebrate species. Variation also appears to exist in the way oscillations cease and somite boundaries become patterned. In addition, in absence of RA, the FGF8 gradient thought to constitute the determination wavefront becomes asymmetric in zebrafish and mouse, extending more anteriorly to the right, while remaining symmetric in chicken. Here we use a computational modelling approach to decipher the causes underlying species differences in asymmetric somitogenesis. Specifically, we investigate to what extent differences can be explained from observed differences in FGF asymmetry and whether differences in somite determination dynamics may also be involved. We demonstrate that a simple clock-and-wavefront model incorporating the observed left-right differences in somitogenesis frequency readily reproduces asymmetric somitogenesis in chicken. However, incorporating asymmetry in FGF signalling was insufficient to robustly reproduce mouse or zebrafish asymmetry phenotypes. In order to explain these phenoptypes we needed to extend the basic model, incorporating species-specific details of the somitogenesis determination mechanism. Our results thus demonstrate that a combination of differences in FGF dynamics and somite determination cause species differences in asymmetric somitogenesis. In addition,they highlight the power of using computational models as well as studying left-right asymmetry to obtain more insight in somitogenesis. Highlights ? We use simple models to study asymmetric somitogenesis in three vertebrate species. ? Differences in somite determination mechanism explain different asymmetric phenotypes. ? Thus, asymmetric somitogenesis provides insight into functional species differences.
机译:摘要Somitoesis是脊椎动物双侧对称的主要标志之一。当抑制视黄酸(RA)信号传导时,这种对称性损失,允许左右测定途径影响Somitoisesis。在所有三个学习的脊椎动物模型种类,斑马鱼,鸡肉和小鼠时,Somite地层的频率变得不对称,具有较慢的基因表达振荡在右侧驾驶同化生物生成。仍然,有趣的是,在这些模型物种之间产生的左右不对称表型显着不同。虽然Somitoesis通常被认为是在不同脊椎动物之间的功能上等同的,但在不同脊椎动物物种之间的振荡基因的子集中存在显着差异。变化也似乎存在于振荡停止和一单体边界的方式中存在。此外,在没有RA的情况下,FGF8梯度认为在斑马鱼和小鼠中构成的确定波前变得不对称,向右向右延伸,同时留在鸡肉中剩余对称。在这里,我们使用计算建模方法来破译不对称体团生物发生的潜在物种差异的原因。具体地,我们研究了从观察到的FGF不对称性差异的程度差异,以及还可以涉及单一确定动态的差异。我们证明,一种简单的时钟和波前模型,其具有观察到的左右差异在OMITOUSENACE频率中易于在鸡肉中再现不对称的同化体。然而,在FGF信号传导中掺入不对称性不足以鲁棒地再现小鼠或斑马鱼不对称表型。为了解释我们需要扩展基本模型的这些缺陷术,纳入了各种细胞生成测定机制的物种细节。因此,我们的结果表明,FGF动力学和SOMITE测定的差异差异的组合在不对称体团生成中的物种差异。此外,它们突出了使用计算模型的力量以及研究左右不对称,以获得更多在Somitoesis的洞察力。强调 ?我们使用简单的模型在三种脊椎动物物种中研究不对称的同性化。还是Somite确定机制的差异解释了不同的不对称表型。还是因此,不对称同化体提供了洞察功能物种的差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号