...
首页> 外文期刊>Surface & Coatings Technology >Achieving of bionic super-hydrophobicity by electrodepositing nano-Ni-pyramids on the picosecond laser-ablated micro-Cu-cone surface
【24h】

Achieving of bionic super-hydrophobicity by electrodepositing nano-Ni-pyramids on the picosecond laser-ablated micro-Cu-cone surface

机译:通过电沉积的纳米Ni-金字塔在PICOSECOND激光烧蚀微铜锥表面上实现仿生超疏水性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The fabrication of a bionic super-hydrophobic metallic surface without any low-surface-energy modification is investigated, in which picosecond laser ablation, electropolishing and electrodeposition are used sequentially. The micro-cone structure is formed via laser ablation, and then the nano-pyramid structure is electrodeposited on the micro-cone structure, resulting in a hierarchical structure that is important for achieving super-hydrophobicity on an intrinsically hydrophilic material surface. In this study, the surface morphology and material removal mechanism are discussed with respect to the laser-ablated surface and the subsequent electropolished/electrodeposited surfaces. The condensation experiments results show that both types of surfaces are associated with relatively high contact angles (CAs) at normal temperatures, and the CAs are 147 degrees and 160 degrees, respectively. However, the CA on the laser-ablated surfaces at low temperatures decreases to as less as 107 degrees, which may be owing to the easy transition from Cassie state to a metastable state or even the Wenzel state, leading to a degraded hydrophobic surface. By contrast, the CA on the sequentially processed surfaces still maintains at 150 degrees, which should be attributed to the densely distributed nano-scale structures. The sequentially processed surfaces also show excellent long-term durability. Furthermore, this technique has been employed for fabricating super-hydrophobic surfaces with CM > 151 degrees and the sliding angles (SAs) < 8 degrees on the inclined surfaces with the inclination angle alpha < 30 degrees. Overall, the technique presented in this study supply a practical and reliable method for realizing the stable Cassie state and hence super-hydrophobicity on metallic surfaces.
机译:研究了没有任何低表面能改性的仿生超疏水金属表面的制造,其中依次使用PICOSecond激光烧蚀,电抛光和电沉积。通过激光烧蚀形成微锥结构,然后在微锥结构上电沉积纳米金字塔结构,导致分层结构对于在本质上亲水材料表面上实现超级疏水性是重要的。在该研究中,关于激光烧蚀表面和随后的电力抛光/电沉积表面讨论了表面形态和材料去除机制。冷凝实验结果表明,两种类型的表面与正常温度的相对高的接触角(CAS)相关,并且CAS分别为147度,160度。然而,低温下激光烧蚀表面上的CA降低至较少至107度,这可能是由于从卡西状态到亚稳态或甚至温革态的易转变,导致疏水表面。相比之下,序贯处理的表面上的CA仍保持在150度,这应该归因于密集分布的纳米级结构。该序贯加工的表面也显示出优异的长期耐久性。此外,已经采用该技术用于制造具有CM> 151度的超级疏水表面,并且具有倾斜角α<30度的倾斜表面上的滑动角度(SAS)<8度。总的来说,本研究中提出的技术提供了一种实现稳定的卡西状态,因此在金属表面上的超疏水性提供了一种实用可靠的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号