首页> 外文期刊>The Journal of Physiology >A structurally derived model of subunit‐dependent NMDA receptor function
【24h】

A structurally derived model of subunit‐dependent NMDA receptor function

机译:亚基依赖性NMDA接收器功能的结构衍生模型

获取原文
获取原文并翻译 | 示例
           

摘要

Key points The kinetics of NMDA receptor (NMDAR) signalling are a critical aspect of the physiology of excitatory synaptic transmission in the brain. Here we develop a mechanistic description of NMDAR function based on the receptor tetrameric structure and the principle that each agonist‐bound subunit must undergo some rate‐limiting conformational change after agonist binding, prior to channel opening. By fitting this mechanism to single channel data using a new MATLAB‐based software implementation of maximum likelihood fitting with correction for limited time resolution, rate constants were derived for this mechanism that reflect distinct structural changes and predict the properties of macroscopic and synaptic NMDAR currents. The principles applied here to develop a mechanistic description of the heterotetrameric NMDAR, and the software used in this analysis, can be equally applied to other heterotetrameric glutamate receptors, providing a unifying mechanistic framework to understanding the physiology of glutamate receptor signalling in the brain. Abstract NMDA receptors (NMDARs) are tetrameric complexes comprising two glycine‐binding GluN1 and two glutamate‐binding GluN2 subunits. Four GluN2 subunits encoded by different genes can produce up to 10 different di‐ and triheteromeric receptors. In addition, some neurological patients contain a de novo mutation or inherited rare variant in only one subunit. There is currently no mechanistic framework to describe tetrameric receptor function that can be extended to receptors with two different GluN1 or GluN2 subunits. Here we use the structural features of glutamate receptors to develop a mechanism describing both single channel and macroscopic NMDAR currents. We propose that each agonist‐bound subunit undergoes some rate‐limiting conformational change after agonist binding, prior to channel opening. We hypothesize that this conformational change occurs within a triad of interactions between a short helix preceding the M1 transmembrane helix, the highly conserved M3 motif encoded by the residues SYTANLAAF, and the linker preceding the M4 transmembrane helix of the adjacent subunit. Molecular dynamics simulations suggest that pre‐M1 helix motion is uncorrelated between subunits, which we interpret to suggest independent subunit‐specific conformational changes may influence these pre‐gating steps. According to this interpretation, these conformational changes are the main determinants of the key kinetic properties of NMDA receptor activation following agonist binding, and so these steps sculpt their physiological role. We show that this structurally derived tetrameric model describes both single channel and macroscopic data, giving a new approach to interpreting functional properties of synaptic NMDARs that provides a logical framework to understanding receptors with non‐identical subunits.
机译:关键点NMDA受体(NMDAR)信号传导的动力学是大脑兴奋性突触传递的生理学的关键方面。在这里,我们基于受体四聚体结构制定对NMDAR功能的机制描述,并且在通道开口之前,每个激动剂结合的亚基必须经历率限制构象变化的原理。通过使用基于新的MATLAB的软件实现将该机制拟合到单通道数据,使用最大似然配件的最大似然拟合,校正有限的时间分辨率,导出速率常数用于反映不同结构变化并预测宏观和突出NMDAR电流的性质。这里应用的原理用于制定异质四聚体NMDAR的机械描述,以及在该分析中使用的软件,可以同等地应用于其他异质溶解的谷氨酸受体,提供统一的机械框架,以了解脑内谷氨酸受体信号传导的生理学。摘要NMDA受体(NMDARS)是包含两个甘氨酸结合的GLUN1和两个谷氨酸结合的GLUN2亚基的四聚体复合物。由不同基因编码的四个Glun2亚基可以产生高达10种不同的二聚体和三色素受体。此外,一些神经系统患者含有DE Novo突变或仅在一个亚基中遗传稀有变体。目前没有机械框架来描述可以扩展到具有两个不同GLUN1或GLUN2亚基的受体的四聚体受体功能。在这里,我们使用谷氨酸受体的结构特征来开发描述单个通道和宏观NMDAR电流的机制。我们提出,在通道开口之前,每个激动剂约束亚基在激动剂结合后经过一些速率限制构象变化。我们假设这种构象变化发生在M1跨膜螺旋前的短螺旋之间的三合会中,是由残留物SytanlaAF编码的高度保守的M3基序和相邻亚基的M4跨膜螺旋前的连接器。分子动力学模拟表明,亚基之间的M1螺旋运动不相关,我们解释了建议独立的亚基特定的构象变化可能影响这些预设步骤。根据这种解释,这些构象变化是在激动剂结合后NMDA受体激活的关键动力学性质的主要决定因素,因此这些步骤雕刻了它们的生理作用。我们表明该结构衍生的四聚模型描述了单个信道和宏观数据,其介绍了解释突触NMDAR的功能特性的新方法,该方法提供了一种逻辑框架,以了解具有非相同亚基的受体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号