...
首页> 外文期刊>The Journal of Physiology >Intact single muscle fibres from SOD1 G93A G93A amyotrophic lateral sclerosis mice display preserved specific force, fatigue resistance and training‐like adaptations
【24h】

Intact single muscle fibres from SOD1 G93A G93A amyotrophic lateral sclerosis mice display preserved specific force, fatigue resistance and training‐like adaptations

机译:来自SOD1 G93A G93A的完整单肌纤维,肌营养的外侧硬化小鼠展示保存的特定力,抗疲劳性和培训的适应性

获取原文
获取原文并翻译 | 示例
           

摘要

Key points How defects in muscle contractile function contribute to weakness in amyotrophic lateral sclerosis (ALS) were systematically investigated. Weakness in whole muscles from late stage SOD1 G93A mice was explained by muscle atrophy as seen by reduced mass and maximal force. On the other hand, surviving single muscle fibres in late stage SOD1 G93A have preserved intracellular Ca 2+ handling, normal force‐generating capacity and increased fatigue resistance. These intriguing findings provide a substrate for therapeutic interventions to potentiate muscular capacity and delay the progression of the ALS phenotype. Abstract Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by degeneration and loss of motor neurons, leading to severe muscle weakness and paralysis. The SOD1 G93A mouse model of ALS displays motor neuron degeneration and a phenotype consistent with human ALS. The purpose of this study was to determine whether muscle weakness in ALS can be attributed to impaired intrinsic force generation in skeletal muscles. In the current study, motor neuron loss and decreased force were evident in whole flexor digitorum brevis (FDB) muscles of mice in the late stage of disease (125–150?days of age). However, in intact single muscle fibres, specific force, tetanic myoplasmic free [Ca 2+ ] ([Ca 2+ ] i ), and resting [Ca 2+ ] i remained unchanged with disease. Fibre‐type distribution was maintained in late‐stage SOD1 G93A FDB muscles, but remaining muscle fibres displayed greater fatigue resistance compared to control and showed increased expression of myoglobin and mitochondrial respiratory chain proteins that are important determinants of fatigue resistance. Expression of genes central to both mitochondrial biogenesis and muscle atrophy where increased, suggesting that atrophic and compensatory adaptive signalling occurs simultaneously within the muscle tissue. These results support the hypothesis that muscle weakness in SOD1 G93A is primarily attributed to neuromuscular degeneration and not intrinsic muscle fibre defects. In fact, surviving muscle fibres displayed maintained adaptive capacity with an exercise training‐like phenotype, which suggests that compensatory mechanisms are activated that can function to delay disease progression.
机译:关键点肌肉收缩函数的缺陷有助于系统地研究了肌营养侧面硬化症(ALS)的弱点。通过减少质量和最大力所见,肌肉萎缩解释了晚期SOD1 G93A小鼠的整个肌肉的弱点。另一方面,在晚期SOD1 G93A中存活的单肌纤维保存了细胞内Ca 2+处理,正常力产生容量和增加的抗疲劳性。这些有趣的发现提供了用于治疗性干预的基材,以增强肌肉能力并延迟ALS表型的进展。摘要肌营养的外侧硬化症(ALS)是一种运动神经元疾病,其特征是运动神经元的变性和失去,导致严重的肌肉无力和瘫痪。 ALS的SOD1 G93A小鼠模型显示电动神经元变性和与人ALS一致的表型。本研究的目的是确定ALS中的肌肉弱点是否可归因于骨骼肌中的内在力受损。在目前的研究中,在疾病晚期的小鼠的整个屈肌位数(FDB)肌肉中,运动神经元损失和力量下降(125-150岁)。然而,在完整的单肌纤维,特定力,滴答物肌原子上没有[Ca 2+]([Ca 2+] I),并静止[Ca 2+]我与疾病保持不变。纤维型分布保持在晚期SOD1 G93A FDB肌肉中,但与对照相比,剩余的肌肉纤维显示出更大的疲劳性,并显示出肌葡萄球菌和线粒体呼吸链蛋白的表达增加,这是疲劳抗性的重要决定因素。基因核心对线粒体生物发生和肌肉萎缩的表达,暗示萎缩和补偿自适应信号在肌肉组织内同时发生。这些结果支持SOD1 G93A中肌肉弱性主要归因于神经肌肉变性,而不是内在肌纤维缺陷。事实上,存活的肌肉纤维显示出与运动训练的表型保持自适应能力,这表明可以激活补偿机制,其可以发挥延迟疾病进展。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号