首页> 外文期刊>The Journal of Physiology >Dysregulation of external globus pallidus‐subthalamic nucleus network dynamics in parkinsonian mice during cortical slow‐wave activity and activation
【24h】

Dysregulation of external globus pallidus‐subthalamic nucleus network dynamics in parkinsonian mice during cortical slow‐wave activity and activation

机译:在皮质慢波活动和激活期间,在皮质慢波活动和激活过程中帕金森山丘外膜外壳 - 亚粒子核网络动力学的失调

获取原文
获取原文并翻译 | 示例
       

摘要

Key points Reciprocally connected GABAergic external globus pallidus (GPe) and glutamatergic subthalamic nucleus (STN) neurons form a key network within the basal ganglia. In Parkinson's disease and its models, abnormal rates and patterns of GPe‐STN network activity are linked to motor dysfunction. Using cell class‐specific optogenetic identification and inhibition during cortical slow‐wave activity and activation, we report that, in dopamine‐depleted mice, (1) D2 dopamine receptor expressing striatal projection neurons (D2‐SPNs) discharge at higher rates, especially during cortical activation, (2) prototypic parvalbumin‐expressing GPe neurons are excessively patterned by D2‐SPNs even though their autonomous activity is upregulated, (3) despite being disinhibited, STN neurons are not hyperactive, and (4) STN activity opposes striatopallidal patterning. These data argue that in parkinsonian mice abnormal, temporally offset prototypic GPe and STN neuron firing results in part from increased striatopallidal transmission and that compensatory plasticity limits STN hyperactivity and cortical entrainment. Abstract Reciprocally connected GABAergic external globus pallidus (GPe) and glutamatergic subthalamic nucleus (STN) neurons form a key, centrally positioned network within the basal ganglia. In Parkinson's disease and its models, abnormal rates and patterns of GPe‐STN network activity are linked to motor dysfunction. Following the loss of dopamine, the activities of GPe and STN neurons become more temporally offset and strongly correlated with cortical oscillations below 40?Hz. Previous studies utilized cortical slow‐wave activity and/or cortical activation (ACT) under anaesthesia to probe the mechanisms underlying the normal and pathological patterning of basal ganglia activity. Here, we combined this approach with in vivo optogenetic inhibition to identify and interrupt the activity of D2 dopamine receptor‐expressing striatal projection neurons (D2‐SPNs), parvalbumin‐expressing prototypic GPe (PV GPe) neurons, and STN neurons. We found that, in dopamine‐depleted mice, (1) the firing rate of D2‐SPNs was elevated, especially during cortical ACT, (2) abnormal phasic suppression of PV GPe neuron activity was ameliorated by optogenetic inhibition of coincident D2‐SPN activity, (3) autonomous PV GPe neuron firing ex vivo was upregulated, presumably through homeostatic mechanisms, (4) STN neurons were not hyperactive, despite being disinhibited, (5) optogenetic inhibition of the STN exacerbated abnormal GPe activity, and (6) exaggerated beta band activity was not present in the cortex or GPe‐STN network. Together with recent studies, these data suggest that in dopamine‐depleted mice abnormally correlated and temporally offset PV GPe and STN neuron activity is generated in part by elevated striatopallidal transmission, while compensatory plasticity prevents STN hyperactivity and limits cortical entrainment.
机译:关键点互惠连接的加巴能物质外壳Pallidus(GPE)和谷氨酸酯次粒细胞核(STN)神经元在基底神经节内形成关键网络。在帕金森病及其模型中,GPE-STN网络活动的异常速率和模式与电机功能障碍有关。在皮质慢波活性和激活期间使用细胞类特异性致敏鉴定和抑制,我们报告,在多巴胺耗尽的小鼠中,(1)表达纹纹突出神经元(D2-SPN)以更高的速率表达纹纹突出的小鼠(D2-SPN),特别是在皮质活化,(2)型丙哒哒哒型GPE神经元由D2-SPN过度图案化,即使它们的自主活动是上调,(3)尽管不安,但STN神经元不是过度活跃的,并且(4)STN活性反对梯形玻璃型图案。这些数据认为,在Parkinsonian小鼠异常中,时间偏移原型GPE和STN神经元烧制部分是从增加的骨质基体传输增加,并且补偿塑性限制了STN多动和皮质夹带。摘要互核连接的加巴能物质外壳Pallidus(GPE)和谷氨酸氨酰次粒子核(STN)神经元在基底神经节内形成一个关键的集中位网络。在帕金森病及其模型中,GPE-STN网络活动的异常速率和模式与电机功能障碍有关。失去多巴胺后,GPE和STN神经元的活性变得更加令人抵消,并与40℃以下的皮质振荡强烈相关。以前的研究利用麻醉剂的皮质慢波活动和/或皮质激活(ACT)在麻醉下探讨基础神经节活动的正常和病理图案化的机制。在此,我们将这种方法与体内致敏抑制相结合以鉴定和中断D2多巴胺受体表达纹状体突出纹理神经元(D2-SPN),表达帕瓦仑表达的原型GPE(PV GPE)神经元和STN神经元的活性。我们发现,在多巴胺耗尽的小鼠中,(1)升高D2-SPN的烧制率,特别是在皮质作用期间,通过致敏D2-SPN活性的致敏抑制来改善PV GPE神经元活性的异常相位抑制,(3)自主式PV GPE神经元烧制前体内,可能通过稳态机制,(4)STN神经元不是过度活跃的,尽管失去了,(5)对STN的致敏抑制加剧了异常的GPE活性,(6)夸大了(6) Cortex或GPE-STN网络中不存在Beta频带活动。这些数据与最近的研究一起表明,在多巴胺耗尽的小鼠中,异常相关的小鼠和时间偏移PV GPE和STN神经元活性是通过升高的纹状体传递产生的,而补偿可塑性可防止STN多动并限制皮质夹带。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号