...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Decomposition of Ionic Liquids at Lithium Interfaces. 1. Ab Initio Molecular Dynamics Simulations
【24h】

Decomposition of Ionic Liquids at Lithium Interfaces. 1. Ab Initio Molecular Dynamics Simulations

机译:锂界面离子液体的分解。 1. AB Initio分子动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

This work is Part 1 in a two part series that investigates the interfacial decomposition chemistry of [pyr14] [TFSI] and [EMIM] [BF4] ionic liquids (IL) at Li metal interfaces. Here, the decomposition is probed primarily through ab initio molecular dynamics (AIMD) simulations. For single ion pairs adsorbed on a Li(100) surface, hybrid ion states are found to emerge about the Fermi level. Interestingly, these states have a significant contribution from both ions, which suggests that the cathodic (reductive) stability could in part be governed by the anions. Room temperature AIMD simulations reveal rapid decomposition of the TFSI anion initiated by C-S and/or S-N bond cleavage due to charge transfer from Li to the anion. The unusual phenomenon of reductive decomposition of the anion is supported by recent experimental reports. The reaction products observed included. LiF, LiO, Li2F, Li2O, SO2, NSO2, NSO2CF3, etc., which are all in excellent agreement with the XPS results. Initial decomposition reactions for both cations and the BF4 anion were only observed in high temperature AIMD simulations. For bulk ILs interfaces with a Li(100) surface, interfacial decomposition reactions again result from charge transfer to the IL from the Li surface, in particular, to anions at the interfaces. The initial decomposition event at bulk interfaces is found to vary depending on the interface structure. The extensive computational analyses presented in this work provide valuable insights into the fundamental interfacial chemistry of ILs in contact with Li metal. In Part 21 of this series, we consider these results further by systematically examining ion reductive stability, the thermodynamics of decomposition, and kinetic limitations to decomposition using gas phase density functional theory (DFT) computations. Results from these studies can be used for further design of these, or perhaps other, ILs to obtain more stable solid electrolyte interface (SEI) layers to improve cycling in advanced battery chemistries.
机译:这项工作是两部分系列中的第1部分,其研究了在Li金属界面的[PYR14] [TFSI]和[emim] [BF4]离子液体(IL)的界面分解化学。这里,分解主要通过AB Initio分子动力学(AIMD)模拟。对于吸附在Li(100)表面上的单离子对,发现混合离子状态呈现出费米水平。有趣的是,这些州对两个离子有重大贡献,这表明阴极(还原)稳定可以部分受到阴离子的管辖。室温旨在模拟揭示C-S和/或S-N键裂解引起的TFSI阴离子的快速分解由于LI对阴离子的电荷转移。最近的实验报告支持阴离子的还原分解的不寻常现象。观察到的反应产物包括在内。 LiF,LiO,Li2F,Li2O,SO2,NSO2,NSO2CF3等,这些都与XPS结果非常一致。仅在高温AIMD模拟中观察到阳离子和BF4阴离子的初始分解反应。对于具有Li(100)表面的散装ILS界面,界面分解反应再次由电荷转移到IL的IL,特别是界面处的阴离子。发现批量接口处的初始分解事件根据接口结构而异。本作作品中提出的广泛计算分析提供了有价值的见解,进入与Li金属接触的ILS的基本界面化学。在本系列的第21部分中,我们通过系统地检查离子还原稳定性,分解的热力学和动力学限制来考虑这些结果,以及使用气相密度功能理论(DFT)计算来分解的动力学限制。这些研究的结果可用于进一步设计这些,或者也许是其他ILS以获得更稳定的固体电解质界面(SEI)层,以改善高级电池化学中的循环。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号