...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Ion Dynamics and CO2 Absorption Properties of Nb-, Ta-, and Y-Doped Li2ZrO3 Studied by Solid-State NMR, Thermogravimetry, and First-Principles Calculations
【24h】

Ion Dynamics and CO2 Absorption Properties of Nb-, Ta-, and Y-Doped Li2ZrO3 Studied by Solid-State NMR, Thermogravimetry, and First-Principles Calculations

机译:通过固态NMR,ThermoGrimetry和First-Primiples计算研究Nb-,Ta-和Y掺杂Li 2 Zro3的离子动力学和CO2吸收性能

获取原文
获取原文并翻译 | 示例

摘要

Among the many different processes proposed for large-scale carbon capture and storage (CCS), high temperature CO2 looping has emerged as a favorable candidate due to the low theoretical energy penalties that can be achieved. Many different materials have been proposed for use in such a process, the process requiring fast CO2 absorption reaction kinetics as well as being able to cycle the material for multiple cycles without loss of capacity. Lithium ternary oxide materials, and in particular Li2ZrO3, have displayed promising performance, but further modifications are needed to improve their rate of reaction with CO2. Previous studies have linked rates of lithium ionic conduction-with CO2 absorption in similar materials, and in this work we present work aimed at exploring the effect of aliovalent doping on the efficacy of Li2ZrO3 as a CO2 sorbent. Using a combination of X-ray powder diffraction, theoretical calculations, and solid-state nuclear magnetic resonance, we studied the impact of Nb, Ta, and Y doping on the structure, Li ionic motion, and CO2 absorption properties of Li2ZrO3. These methods allowed us to characterize the theoretical and experimental doping limit into the pure material, suggesting that vacancies formed upon doping are not fully disordered but instead are correlated to the dopant atom positions, limiting the solubility range. Characterization of the lithium motion using variable-temperature solid-state nuclear magnetic resonance confirms that interstitial doping with Y retards the movement of Li ions in the structure, whereas vacancy doping with Nb or Ta results in a similar activation energy as observed for nominally pure Li2ZrO3. However, a marked reduction in the CO2 absorption of the Nb- and Ta-doped samples suggests that doping also leads to a change in the carbonation equilibrium of Li2ZrO3, disfavoring the CO2 absorption at the reaction temperature. This study shows that a complex mixture of structural, kinetic, and dynamic factors can influence the performance of Li-based materials for CCS and underscores the importance of balancing these different factors in order to optimize the process.
机译:在大规模碳捕获和储存(CCS)所提出的许多不同过程中,由于可以实现的低理论能源惩罚,高温CO2环形作为一个有利的候选者。已经提出了许多不同的材料用于这种过程,该方法需要快速CO 2吸收反应动力学以及能够在不损失容量的情况下循环多个循环的材料。锂三元氧化物材料,特别是Li 2 Zro3,表现出了有希望的性能,但需要进一步的修饰来提高它们与CO2的反应速率。以前的研究具有类似材料的二氧化碳吸收的锂离子传导的链接率,并且在这项工作中,我们目前旨在探索除价掺杂对Li 2 Zro3作为CO 2吸附剂的疗效的作用。使用X射线粉末衍射,理论计算和固态核磁共振的组合,我们研究了Nb,Ta和Y掺杂对Li 2 Zro3结构,Li离子运动和CO2吸收性能的影响。这些方法使我们能够将理论和实验掺杂极限表征为纯材料,表明在掺杂时形成的空位没有完全无序,而是与掺杂剂原子位置相关,限制溶解度范围。使用可变温度固态核磁共振的锂运动的表征证实,与y的间质掺杂延迟了锂离子在结构中的运动,而用Nb或Ta的空位掺杂导致相似的活化能量,如对于名称纯的Li 2 Zro3所观察到的类似活化能量。 。然而,Nb-和Ta掺杂样品的CO 2吸收的显着还原表明,掺杂也导致Li 2 Zro3的碳酸化平衡的变化,使得在反应温度下的CO 2吸收。本研究表明,结构,动力学和动态因素的复杂混合物可以影响锂基础材料的性能,并强调平衡这些不同因素以优化该过程的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号